A theorem on boundary functions for quantum shutters

被引:4
|
作者
Godoy, Salvador [1 ]
Olvera, Norma
del Campo, A.
机构
[1] Univ Nacl Autonoma Mexico, Fac Ciencias, Dept Fis, Mexico City 04510, DF, Mexico
[2] Univ Basque Country, Dept Quim Fis, E-48080 Bilbao, Spain
关键词
diffraction in time; Kirchhoff approximation; transient waves;
D O I
10.1016/j.physb.2007.03.021
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We prove for one-dimensional time-dependent quantum absorbing (and reflecting) slits that for right-moving incident waves, the Laplace transform of the boundary function must have singular points at the complex roots of root s +/- i root(i epsilon/h) = 0. We test our result against the exact case of the Moshinsky absorbing (and reflecting) shutter, and the agreement is perfect. In the same Moshinsky problem, when the approximated Kirchhoff boundary condition is used, the transmitted wave is a superposition of right- and left-moving Moshinsky packets. Neglecting the wrong directed wave components we get the exact solution. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:108 / 112
页数:5
相关论文
共 50 条
  • [1] A BOUNDARY THEOREM FOR TSUJI FUNCTIONS
    COLLINGWOOD, EF
    NAGOYA MATHEMATICAL JOURNAL, 1967, 29 (MAR) : 197 - +
  • [2] A boundary uniqueness theorem for Sobolev functions
    Miklyukov, VM
    Vuorinen, M
    TOHOKU MATHEMATICAL JOURNAL, 1998, 50 (04) : 503 - 511
  • [3] BOUNDARY UNIQUENESS THEOREM FOR MEROMORPHIC FUNCTIONS
    GAVRILOV, VI
    MIRZOIAN, MM
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1979, (04): : 34 - 37
  • [4] Virial theorem for an inhomogeneous medium, boundary conditions for the wave functions, and stress tensor in quantum statistics
    Bobrov, V. B.
    Trigger, S. A.
    van Heijst, G. J. F.
    Schram, P. P. J. M.
    PHYSICAL REVIEW E, 2010, 82 (01):
  • [5] LOCAL BOUNDARY THEOREM FOR MULTIPLICATIVE ARITHMETIC FUNCTIONS
    TULYAGANOV, ST
    ACTA ARITHMETICA, 1986, 45 (04) : 359 - 369
  • [6] Generalization of the Boundary Uniqueness Theorem for A(z)-Analytic Functions
    Zhabbarov, Nasridin
    Husenov, Behzod
    PROCEEDINGS OF THE IUTAM SYMPOSIUM ON OPTIMAL GUIDANCE AND CONTROL FOR AUTONOMOUS SYSTEMS 2023, 2024, 40 : 287 - 297
  • [7] Behaviour of boundary functions for quantum billiards
    Bäcker, A
    Fürstberger, S
    Schubert, R
    Steiner, F
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (48): : 10293 - 10310
  • [8] A decomposition theorem for wave functions in molecular quantum chemistry
    Bokanowski, O
    Grebert, B
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1996, 6 (04): : 437 - 466
  • [9] Boundary behavior of quantum Green's functions
    Samaj, L
    Percus, JK
    Kalinay, P
    JOURNAL OF MATHEMATICAL PHYSICS, 2003, 44 (04) : 1625 - 1637
  • [10] Generalization of the Ehrenfest theorem to quantum systems with periodical boundary conditions
    Sanin, AL
    Bagmanov, AT
    Eighth International Workshop on Nondestructive Testing and Computer Simulations in Science and Engineering, 2005, 5831 : 15 - 17