Detection of Epilepsy Seizures in Neo-Natal EEG Using LSTM Architecture

被引:60
|
作者
Abbasi, Muhammad U. [1 ]
Rashad, Anum [1 ]
Basalamah, Anas [2 ]
Tariq, Muhammad [1 ]
机构
[1] Natl Univ Comp & Emerging Sci, Dept Elect Engn, Peshawar 25000, Pakistan
[2] Umm Al Qura Univ, Comp Engn Dept, Mecca 24231, Saudi Arabia
来源
IEEE ACCESS | 2019年 / 7卷
关键词
Deep learning; neo-natal EEG; LSTM architecture; desnoising; biomedical signal processing; PREDICTION; CLASSIFICATION; NETWORKS; SVM;
D O I
10.1109/ACCESS.2019.2959234
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Epilepsy is the most unpredictable and recurrent disease among neurological diseases. Early detection of epileptic seizures can play a critical role in providing timely treatment to patients especially when a patient is in a remote area. This paper uses deep learning framework to detect epilepsy in the Electroencephalography (EEG) signal. The dataset used is publicly available and has a recording of three kinds of EEG signals: pre-ictal, inter-ictal (seizure-free epileptic) and ictal (epileptic with seizure). The proposed Long Short-Term Memory (LSTM) classifier classifies these three kinds of signals with up to 95% accuracy. For binary classification such as detection of inter-ictal or ictal only, its accuracy increases to 98%. The EEG signal is modelled as wide sense non-stationary random signal. Hurst Exponent and Auto-regressive Moving Average (ARMA) features are extracted from each signal. In this work, two different configurations of LSTM architecture: single-layered memory units and double-layered memory units are also modelled. After standardising the features, double-layered LSTM approach gives the highest accuracy in comparison to previously used Support Vector Machine (SVM) classifier and proved to be computationally efficient at Graphics Processing Unit (GPU).
引用
收藏
页码:179074 / 179085
页数:12
相关论文
共 50 条
  • [1] DEVELOPMENT OF RENAL FUNCTION IN FETAL AND NEO-NATAL RABBITS USING PHENOLSULFONPHTHALEIN
    WILLIAMSON, RC
    HIATT, EP
    [J]. PROCEEDINGS OF THE SOCIETY FOR EXPERIMENTAL BIOLOGY AND MEDICINE, 1947, 66 (03): : 554 - 557
  • [2] Assessing neo-natal mortality trends in Pakistan: an insight using equity lens
    Dawood, Zainab
    Majeed, Naeem
    [J]. ARCHIVES OF PUBLIC HEALTH, 2022, 80 (01)
  • [3] Assessing neo-natal mortality trends in Pakistan: an insight using equity lens
    Zainab Dawood
    Naeem Majeed
    [J]. Archives of Public Health, 80
  • [4] Detection of Epilepsy Seizures and Epileptic Indicators in EEG Signals
    Yuecel, Zeynep
    Oezgueler, A. Buelent
    [J]. 2008 IEEE 16TH SIGNAL PROCESSING, COMMUNICATION AND APPLICATIONS CONFERENCE, VOLS 1 AND 2, 2008, : 898 - 901
  • [5] Epilepsy Detection from EEG Data Using a Hybrid CNN-LSTM Model
    Neloy, Md. Arif Istiak
    Biswas, Anik
    Nahar, Nazmun
    Hossain, Mohammad Shahadat
    Andersson, Karl
    [J]. BRAIN INFORMATICS (BI 2022), 2022, 13406 : 253 - 263
  • [6] Automatic Detection of epilepsy-typical Potentials and Seizures in the EEG
    Baumgartner, Christoph
    Hafner, Sebastian
    Koren, Johannes P.
    [J]. KLINISCHE NEUROPHYSIOLOGIE, 2020, 51 (03) : 118 - 131
  • [7] Automatic Detection of epilepsy-typical Potentials and Seizures in the EEG
    Baumgartner, Christoph
    Hafner, Sebastian
    Koren, Johannes P.
    [J]. FORTSCHRITTE DER NEUROLOGIE PSYCHIATRIE, 2021, 89 (09) : 445 - 456
  • [8] Obstetric and neo-natal outcomes of ICSI cycles using pentoxifylline to identify viable spermatozoa in patients with immotile spermatozoa
    Navas, Purificacion
    Paffoni, Alessio
    Intra, Giulia
    Gonzalez-Utor, Antonio
    Clavero, Ana
    Carmen Gonzalvo, Maria
    Diaz, Rocio
    Pena, Rocio
    Restelli, Liliana
    Somigliana, Edgardo
    Papaleo, Enrico
    Castilla, Jose A.
    Vigano, Paola
    [J]. REPRODUCTIVE BIOMEDICINE ONLINE, 2017, 34 (04) : 414 - 421
  • [9] BEYOND SPIKES AND SEIZURES: DETECTION OF INTERICTAL EEG ASYMMETRIES IN FOCAL EPILEPSY
    Klooster, D. C. W.
    Vogrin, S.
    Grayden, D. B.
    Cook, M. J.
    [J]. EPILEPSIA, 2011, 52 : 80 - 81
  • [10] Detection of Epileptic Seizures using EEG Signals
    Gupta, Sarthak
    Bagga, Siddhant
    Maheshkar, Vikas
    Bhatia, M. P. S.
    [J]. 2020 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND SIGNAL PROCESSING (AISP), 2020,