Tuning the lateral density of ZnO nanowire arrays and its application as physical templates for radial nanowire heterostructures

被引:27
|
作者
Cao, B. Q. [1 ,2 ]
Zuniga-Perez, J. [2 ]
Czekalla, C. [2 ]
Hilmer, H. [2 ]
Lenzner, J. [2 ]
Boukos, N. [3 ]
Travlos, A.
Lorenz, M. [2 ]
Grundmann, M. [2 ]
机构
[1] Univ Jinan, Sch Mat Sci & Engn, Shandong 250022, Peoples R China
[2] Univ Leipzig, Fak Phys & Geowissensch, Inst Expt Phys 2, D-04103 Leipzig, Germany
[3] Natl Ctr Sci Res Demokritos, Inst Mat Sci, GR-15310 Athens, Greece
关键词
PULSED-LASER DEPOSITION; CONTROLLED GROWTH; FIELD-EMISSION; OPTICAL-PROPERTIES; PATTERNED GROWTH; NANORODS; COST;
D O I
10.1039/b926475b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The lateral density of ZnO nanowire arrays grown with pulsed laser deposition (PLD) can be tuned from 1 to 10(-2) mu m(-2) by introducing a ZnO nucleation layer and optimizing the distance between the substrate and the ablated target. High-density (similar to 10 mu m(-2)) nanowire arrays can be grown on sapphire substrates with or without gold catalysts. However, if a ZnO wetting layer was adopted, the density of ZnO nanowires could be controlled with high reproducibility. The decreasing growth density is attributed to a competition between the two-dimensional film epitaxy and one-dimensional nanowire growth. The dependence of nanowire density on the substrate-target distance mainly arises from the expansion dynamics of the plasma plume and the chamber geometry. Using low-density nanowires as templates, a general PLD route was developed to grow radial nanowire heterostructures. Here we demonstrate MgZnO/ZnO/MgZnO nanowire quantum wells and ZnO/ZnO:P core-shell nanowire p-n junctions.
引用
收藏
页码:3848 / 3854
页数:7
相关论文
共 50 条
  • [1] Polar and Nonpolar ZnO Nanowire QWs grown with PLD using Nanowire Arrays with Tuning Density as Physical Templates
    Cao, Bingqiang
    Wei, Haoming
    Hu, Xilun
    Gong, Haibo
    NANO-SCALE AND AMOURPHOUS MATERIALS, 2011, 688 : 207 - 212
  • [2] Radial and Axial Nanowire Heterostructures Grown with ZnO Nanowires as Templates
    Cao, B. Q.
    Hu, X. L.
    Wei, H. M.
    Xu, H. Y.
    TENCON 2010: 2010 IEEE REGION 10 CONFERENCE, 2010, : 986 - 989
  • [3] Tuning Physical and Optical Properties of ZnO Nanowire Arrays Grown on Cotton Fibers
    Athauda, Thushara J.
    Hari, Parameswar
    Ozer, Ruya R.
    ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (13) : 6237 - 6246
  • [4] ZnO/cubic (Mg,Zn)O radial nanowire heterostructures
    Y.W. Heo
    M. Kaufman
    K. Pruessner
    K.N. Siebein
    D.P. Norton
    F. Ren
    Applied Physics A, 2005, 80 : 263 - 266
  • [5] ZnO/cubic (Mg,Zn)O radial nanowire heterostructures
    Heo, YW
    Kaufman, M
    Pruessner, K
    Siebein, KN
    Norton, DP
    Ren, F
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2005, 80 (02): : 263 - 266
  • [6] Optimization of Gated ZnO Nanowire Field-Emitter Arrays by Tuning Pixel Density
    Zhang, Songyou
    Cao, Xiuqing
    Zhang, Guofu
    Deng, Shaozhi
    She, Juncong
    Xu, Ningsheng
    Chen, Jun
    2021 34TH INTERNATIONAL VACUUM NANOELECTRONICS CONFERENCE (IVNC), 2021, : 203 - 204
  • [7] Ultrathin seed-layer for tuning density of ZnO nanowire arrays and their field emission characteristics
    Liu, Jun
    She, Juncong
    Deng, Shaozhi
    Chen, Jun
    Xu, Ningsheng
    JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (31): : 11685 - 11690
  • [8] Hydrothermal growth of ZnO nanowire arrays: fine tuning by precursor supersaturation
    Yan, Danhua
    Cen, Jiajie
    Zhang, Wenrui
    Orlov, Alexander
    Liu, Mingzhao
    CRYSTENGCOMM, 2017, 19 (03): : 584 - 591
  • [9] Novel ZnO-ZnS nanowire arrays with heterostructures and enhanced photocatalytic properties
    Gao, Xingxing
    Wang, Jian
    Yu, Jianglong
    Xu, Hongbo
    CRYSTENGCOMM, 2015, 17 (33): : 6328 - 6337
  • [10] Optimizing the Field Emission Properties of ZnO Nanowire Arrays by Precisely Tuning the Population Density and Application in Large-Area Gated Field Emitter Arrays
    Li, Yufeng
    Zhang, Zhipeng
    Zhang, Guofu
    Zhao, Long
    Deng, Shaozhi
    Xu, Ningsheng
    Chen, Jun
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (04) : 3911 - 3921