KdV equation as an Euler-Poincare equation

被引:0
|
作者
Fung, MK [1 ]
机构
[1] Natl Taiwan Normal Univ, Dept Phys, Taipei 117, Taiwan
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Poincare had generalised the Euler equation to any Lie algebra. We apply the same method to the infinite dimensional Virasoro algebra to obtain the KdV equation. We have discussed in a quite self-contained way the symmetries of the KdV equation and the Virasoro algebra and their interconnection.
引用
收藏
页码:789 / 796
页数:8
相关论文
共 50 条
  • [1] CHARACTERISTICS OF EULER-POINCARE
    VERDIER, JL
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1973, 101 (04): : 441 - 445
  • [2] Dynamics Analysis of a Dual- arm Space Robot Using Euler-Poincare Equation
    Zhang Baosheng
    Li Yanan
    2015 SEVENTH INTERNATIONAL CONFERENCE ON MEASURING TECHNOLOGY AND MECHATRONICS AUTOMATION (ICMTMA 2015), 2015, : 407 - 410
  • [3] On Euler-Poincare characteristics
    Virk, Rahbar
    COMPTES RENDUS MATHEMATIQUE, 2015, 353 (05) : 449 - 453
  • [4] THE EULER-POINCARE THEORY OF METAMORPHOSIS
    Holm, Darryl D.
    Trouve, Alain
    Younes, Laurent
    QUARTERLY OF APPLIED MATHEMATICS, 2009, 67 (04) : 661 - 685
  • [5] ON CURVATURE AND EULER-POINCARE CHARACTERISTIC
    BISHOP, RL
    GOLDBERG, SI
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1963, 49 (06) : 814 - &
  • [6] Euler-Poincare Equation for Lie Groups with Non Null Symplectic Cohomology. Application to the Mechanics
    de Saxce, Gery
    GEOMETRIC SCIENCE OF INFORMATION, 2019, 11712 : 66 - 74
  • [7] INCREASE IN EULER-POINCARE CHARACTERISTICS
    MALLIAVI.MP
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1972, 275 (22): : 1155 - &
  • [8] AN EXTENDED EULER-POINCARE THEOREM
    BJORNER, A
    KALAI, G
    ACTA MATHEMATICA, 1988, 161 (3-4) : 279 - 303
  • [9] Stochastic Euler-Poincare reduction
    Arnaudon, Marc
    Chen, Xin
    Cruzeiro, Ana Bela
    JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (08)
  • [10] Euler-Poincare Approaches to Nematodynamics
    Gay-Balmaz, Francois
    Ratiu, Tudor S.
    Tronci, Cesare
    ACTA APPLICANDAE MATHEMATICAE, 2012, 120 (01) : 127 - 151