Approaching nonsmooth nonconvex minimization through second-order proximal-gradient dynamical systems

被引:14
|
作者
Bot, Radu Ioan [1 ]
Csetnek, Ernoe Robert [1 ]
Laszlo, Szilard Csaba [2 ]
机构
[1] Univ Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
[2] Tech Univ Cluj Napoca, Dept Math, Memorandumului 28, Cluj Napoca, Romania
基金
奥地利科学基金会;
关键词
Second-order dynamical system; Nonsmooth nonconvex optimization; Limiting subdifferential; Kurdyka-ojasiewicz property; MAXIMAL MONOTONE-OPERATORS; CONVERGENCE; ALGORITHMS; INCLUSIONS;
D O I
10.1007/s00028-018-0441-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the asymptotic properties of the trajectories generated by a second-order dynamical system of proximal-gradient type stated in connection with the minimization of the sum of a nonsmooth convex and a (possibly nonconvex) smooth function. The convergence of the generated trajectory to a critical point of the objective is ensured provided a regularization of the objective function satisfies the Kurdyka-ojasiewicz property. We also provide convergence rates for the trajectory formulated in terms of the ojasiewicz exponent.
引用
收藏
页码:1291 / 1318
页数:28
相关论文
共 50 条
  • [1] Approaching nonsmooth nonconvex minimization through second-order proximal-gradient dynamical systems
    Radu Ioan Boţ
    Ernö Robert Csetnek
    Szilárd Csaba László
    Journal of Evolution Equations, 2018, 18 : 1291 - 1318
  • [2] Distributed proximal-gradient algorithms for nonsmooth convex optimization of second-order multiagent systems
    Wang, Qing
    Chen, Jie
    Zeng, Xianlin
    Xin, Bin
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2020, 30 (17) : 7574 - 7592
  • [3] ON CONVERGENCE ANALYSIS OF DUAL PROXIMAL-GRADIENT METHODS WITH APPROXIMATE GRADIENT FOR A CLASS OF NONSMOOTH CONVEX MINIMIZATION PROBLEMS
    Liu, Sanming
    Wang, Zhijie
    Liu, Chongyang
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2016, 12 (01) : 389 - 402
  • [4] Bregman Proximal Gradient Algorithm With Extrapolation for a Class of Nonconvex Nonsmooth Minimization Problems
    Zhang, Xiaoya
    Barrio, Roberto
    Angeles Martinez, M.
    Jiang, Hao
    Cheng, Lizhi
    IEEE ACCESS, 2019, 7 : 126515 - 126529
  • [5] A class of modified accelerated proximal gradient methods for nonsmooth and nonconvex minimization problems
    Wang, Ting
    Liu, Hongwei
    NUMERICAL ALGORITHMS, 2024, 95 (01) : 207 - 241
  • [6] Bregman proximal gradient algorithm with extrapolation for a class of nonconvex nonsmooth minimization problems
    Department of Mathematics, National University of Defense Technology, Changsha, Hunan
    410073, China
    不详
    不详
    410073, China
    arXiv,
  • [7] A class of modified accelerated proximal gradient methods for nonsmooth and nonconvex minimization problems
    Ting Wang
    Hongwei Liu
    Numerical Algorithms, 2024, 95 : 207 - 241
  • [8] Approaching Nonsmooth Nonconvex Optimization Problems Through First Order Dynamical Systems with Hidden Acceleration and Hessian Driven Damping Terms
    Radu Ioan Boţ
    Ernö Robert Csetnek
    Set-Valued and Variational Analysis, 2018, 26 : 227 - 245
  • [9] Approaching Nonsmooth Nonconvex Optimization Problems Through First Order Dynamical Systems with Hidden Acceleration and Hessian Driven Damping Terms
    Bot, Radu Ioan
    Csetnek, Ernoe Robert
    SET-VALUED AND VARIATIONAL ANALYSIS, 2018, 26 (02) : 227 - 245
  • [10] Linear convergence of proximal incremental aggregated gradient method for nonconvex nonsmooth minimization problems
    Liu, Y. C.
    Xia, F. Q.
    APPLICABLE ANALYSIS, 2022, 101 (09) : 3445 - 3464