Top-down estimate of mercury emissions in China using four-dimensional variational data assimilation

被引:28
|
作者
Pan, Li [1 ]
Chai, Tianfeng
Carmichael, Gregory R.
Tang, Youhua
Streets, David
Woo, Jung-Hun
Friedli, Hans R.
Radke, Lawrence F.
机构
[1] Univ Iowa, Ctr Global & Reg Environm Res, Iowa City, IA 52242 USA
[2] Argonne Natl Lab, Argonne, IL 60439 USA
[3] NESCAUM, Boston, MA 02114 USA
[4] Natl Ctr Atmospher Res, Boulder, CO 80307 USA
基金
美国海洋和大气管理局; 美国国家航空航天局;
关键词
mercury; inventory evaluation; China; data assimilation; 4D-Var;
D O I
10.1016/j.atmosenv.2006.11.048
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
An inverse modeling method using the four-dimensional variational data assimilation approach is developed to provide a top-down estimate of mercury emission inventory in China. The mercury observations on board the C130 aircraft during the Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia) campaign in April 2001 are assimilated into a regional chemical transport model, STEM. Using a 340 Mg of elemental mercury emitted in 1999, the assimilation results in an increase in Hg-0 emissions for China to 1140 Mg in 2001. This is an upper limit amount of the elemental mercury required in China. The average emission-scaling factor is similar to 3.4 in China. The spatial changes in the mercury emissions after the assimilation are also evaluated. The largest changes are estimated on the China north-east coastal areas and the areas of north-center China. The influences of the observation and inventory uncertainties and the initial and boundary conditions on the emission estimates are discussed. Increasing the boundary conditions of Hg from 1.2 to 1.5ngm(-3), results in a top-down estimate of Hg-0 emissions for China of 718 Mg, and leads the average scaling factor from 3.4 to 2.1. (C) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2804 / 2819
页数:16
相关论文
共 50 条
  • [1] Weak constraints in four-dimensional variational data assimilation
    Watkinson, Laura R.
    Lawless, Amos S.
    Nichols, Nancy K.
    Roulstone, Ian
    [J]. METEOROLOGISCHE ZEITSCHRIFT, 2007, 16 (06) : 767 - 776
  • [2] Four-dimensional variational data assimilation for the blizzard of 2000
    Zupanski, M
    Zupanski, D
    Parrish, DF
    Rogers, E
    DiMego, G
    [J]. MONTHLY WEATHER REVIEW, 2002, 130 (08) : 1967 - 1988
  • [3] An Economical Approach to Four-dimensional Variational Data Assimilation
    王斌
    刘娟娟
    王曙东
    成巍
    刘娟
    刘成思
    Ying-Hwa KUO
    [J]. Advances in Atmospheric Sciences, 2010, 27 (04) : 715 - 727
  • [4] An economical approach to four-dimensional variational data assimilation
    Wang Bin
    Liu Juanjuan
    Wang Shudong
    Cheng Wei
    Liu Juan
    Liu Chengsi
    Xiao, Qingnong
    Kuo, Ying-Hwa
    [J]. ADVANCES IN ATMOSPHERIC SCIENCES, 2010, 27 (04) : 715 - 727
  • [5] An explicit four-dimensional variational data assimilation method
    ChongJian Qiu
    Lei Zhang
    AiMei Shao
    [J]. Science in China Series D: Earth Sciences, 2007, 50 : 1232 - 1240
  • [6] A preconditioning algorithm for four-dimensional variational data assimilation
    Zupanski, M
    [J]. MONTHLY WEATHER REVIEW, 1996, 124 (11) : 2562 - 2573
  • [7] An explicit four-dimensional variational data assimilation method
    Qiu ChongJian
    Zhang Lei
    Shao AiMei
    [J]. SCIENCE IN CHINA SERIES D-EARTH SCIENCES, 2007, 50 (08): : 1232 - 1240
  • [8] An economical approach to four-dimensional variational data assimilation
    Bin Wang
    Juanjuan Liu
    Shudong Wang
    Wei Cheng
    Liu Juan
    Chengsi Liu
    Qingnong Xiao
    Ying-Hwa Kuo
    [J]. Advances in Atmospheric Sciences, 2010, 27 : 715 - 727
  • [9] An explicit four-dimensional variational data assimilation method
    QIU ChongJian
    [J]. Science China Earth Sciences, 2007, (08) : 1232 - 1240
  • [10] Adjoint inverse modeling of CO emissions over Eastern Asia using four-dimensional variational data assimilation
    Yumimoto, Keiya
    Uno, Itsushi
    [J]. ATMOSPHERIC ENVIRONMENT, 2006, 40 (35) : 6836 - 6845