FUNCTIONAL PRINCIPAL COMPONENT ANALYSIS FOR DERIVATIVES OF MULTIVARIATE CURVES

被引:4
|
作者
Grith, Maria [1 ]
Wagner, Heiko [2 ]
Haerdle, Wolfgang K. [2 ,3 ,4 ,5 ]
Kneip, Alois [2 ]
机构
[1] Erasmus Univ, Erasmus Sch Econ, Econometr Inst, Burg Oudlaan 50, NL-3062 PA Rotterdam, Netherlands
[2] Univ Bonn, Inst Financial Econ & Stat, Dept Econ, Adenauerallee 24-26, D-53113 Bonn, Germany
[3] Humboldt Univ, Sch Business & Econ, Ladislaus von Bortkiewicz Chair Stat, Spandauer Stra 1, D-10178 Berlin, Germany
[4] Humboldt Univ, Sch Business & Econ, CASE, Spandauer Stra 1, D-10178 Berlin, Germany
[5] Singapore Management Univ, Sim Kee Boon Inst Financial Econ, 81 Victoria St, Singapore 188065, Singapore
关键词
Derivatives; dual method; functional principal component analysis; multivariate functions; option prices; state price densities; VARIANCE-ESTIMATION; REGRESSION; VOLATILITY; BANDWIDTH; KERNELS; MODEL; SHAPE;
D O I
10.5705/ss.202017.0199
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose two methods based on the functional principal component analysis (FPCA) to estimate smooth derivatives for a sample of observed curves with a multidimensional domain. We apply the eigendecomposition to a) the dual covariance matrix of the derivatives; b) the dual covariance matrix of the observed curves, and take derivatives of their eigenfunctions. To handle noisy and discrete observations, we rely on local polynomial regression. We show that if the curves are contained in a finite-dimensional function space, the second method performs better asymptotically. We apply our methodology in simulations and an empirical study of option implied state price density surfaces. Using call data for the DAX 30 stock index between 2002 and 2011, we identify three components that are interpreted as volatility, skewness and tail factors, and we find evidence of term structure variation.
引用
收藏
页码:2469 / 2496
页数:28
相关论文
共 50 条
  • [1] Efficient Bayesian functional principal component analysis of irregularly-observed multivariate curves
    Nolan, Tui H.
    Richardson, Sylvia
    Ruffieux, Helene
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2025, 203
  • [2] Sparse multivariate functional principal component analysis
    Song, Jun
    Kim, Kyongwon
    STAT, 2022, 11 (01):
  • [3] Principal component analysis of multivariate spatial functional data
    Si-ahmed, Idris
    Hamdad, Leila
    Agonkoui, Christelle Judith
    Kande, Yoba
    Dabo-Niang, Sophie
    BIG DATA RESEARCH, 2025, 39
  • [4] MULTIVARIATE FUNCTIONAL PRINCIPAL COMPONENT ANALYSIS: A NORMALIZATION APPROACH
    Chiou, Jeng-Min
    Chen, Yu-Ting
    Yang, Ya-Fang
    STATISTICA SINICA, 2014, 24 (04) : 1571 - 1596
  • [5] Interpretable principal component analysis for multilevel multivariate functional data
    ZHANG, J. U. N.
    SIEGLE, G. R. E. G. J.
    SUN, T. A. O.
    D'ANDREA, W. E. N. D. Y.
    KRAFTY, R. O. B. E. R. T. T.
    BIOSTATISTICS, 2023, 24 (02) : 227 - 243
  • [6] Graphical Principal Component Analysis of Multivariate Functional Time Series
    Tan, Jianbin
    Liang, Decai
    Guan, Yongtao
    Huang, Hui
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2024, 119 (548) : 3073 - 3085
  • [7] On the estimation of the number of components in multivariate functional principal component analysis
    Golovkine, Steven
    Gunning, Edward
    Simpkin, Andrew J.
    Bargary, Norma
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2025,
  • [8] Functional principal component analysis for multivariate multidimensional environmental data
    Di Salvo, Francesca
    Ruggieri, Mariantonietta
    Plaia, Antonella
    ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2015, 22 (04) : 739 - 757
  • [9] Functional principal component analysis for multivariate multidimensional environmental data
    Francesca Di Salvo
    Mariantonietta Ruggieri
    Antonella Plaia
    Environmental and Ecological Statistics, 2015, 22 : 739 - 757
  • [10] Functional principal component analysis of H-reflex recruitment curves
    Kipp, Kristof
    Johnson, Samuel T.
    Hoffman, Mark A.
    JOURNAL OF NEUROSCIENCE METHODS, 2011, 197 (02) : 270 - 273