Constructing all genus 2 curves with supersingular Jacobian

被引:1
|
作者
Pieper, Andreas [1 ]
机构
[1] Univ Ulm, Inst Algebra & Zahlentheorie, Helmholtzstr 18, D-89081 Ulm, Germany
关键词
D O I
10.1007/s40993-022-00330-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
L. Moret-Bailly constructed families C -> P-1 of genus 2 curves with supersingular Jacobian. In this paper we first classify the reducible fibers of a Moret-Bailly family using linear algebra over a quaternion algebra. The main result is an algorithm that exploits properties of two reducible fibers to compute a hyperelliptic model for any irreducible fiber of a Moret-Bailly family.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] Constructing all genus 2 curves with supersingular Jacobian
    Andreas Pieper
    Research in Number Theory, 2022, 8
  • [2] Constructing pairing-friendly genus 2 curves with split Jacobian
    Drylo, Robert
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2012, 7668 LNCS : 431 - 453
  • [3] Zeta functions of supersingular curves of genus 2
    Maisner, Daniel
    Nart, Enric
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2007, 59 (02): : 372 - 392
  • [4] TRISECTION FOR SUPERSINGULAR GENUS 2 CURVES IN CHARACTERISTIC 2
    Miret, Josep M.
    Pujolas, Jordi
    Theriault, Nicolas
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2014, 8 (04) : 375 - 387
  • [5] Pairing calculation on supersingular genus 2 curves
    hEigeartaigh, Colm O.
    Scott, Michael
    SELECTED AREAS IN CRYPTOGRAPHY, 2007, 4356 : 302 - +
  • [6] Jacobian Coordinates on Genus 2 Curves
    Hisil, Huseyin
    Costello, Craig
    ADVANCES IN CRYPTOLOGY - ASIACRYPT 2014, PT I, 2014, 8873 : 338 - 357
  • [7] Jacobian Coordinates on Genus 2 Curves
    Hisil, Huseyin
    Costello, Craig
    JOURNAL OF CRYPTOLOGY, 2017, 30 (02) : 572 - 600
  • [8] Jacobian Coordinates on Genus 2 Curves
    Huseyin Hisil
    Craig Costello
    Journal of Cryptology, 2017, 30 : 572 - 600
  • [9] SUPERSINGULAR CURVES OF GENUS 2 AND CLASS-NUMBERS
    IBUKIYAMA, T
    KATSURA, T
    OORT, F
    COMPOSITIO MATHEMATICA, 1986, 57 (02) : 127 - 152
  • [10] ON THE EXISTENCE OF SUPERSINGULAR CURVES OF GIVEN GENUS
    VANDERGEER, G
    VANDERVLUGT, M
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1995, 458 : 53 - 61