Characteristics of microscopic pore structure and fractal dimension of bituminous coal by cyclic gas adsorption/desorption: An experimental study

被引:94
|
作者
Wang, Zhenyang [1 ,2 ,3 ]
Cheng, Yuanping [1 ,2 ,3 ]
Zhang, Kaizhong [1 ,2 ,3 ]
Hao, Congmeng [1 ,2 ,3 ]
Wang, Liang [1 ,2 ,3 ]
Li, Wei [1 ,2 ,3 ]
Hu, Biao [1 ,2 ,3 ]
机构
[1] China Univ Min & Technol, Key Lab Coal Methane & Fire Control, Minist Educ, Xuzhou 221116, Jiangsu, Peoples R China
[2] China Univ Min & Technol, Natl Engn Res Ctr Coal & Gas Control, Xuzhou 221116, Jiangsu, Peoples R China
[3] China Univ Min & Technol, Sch Safety Engn, Xuzhou 221116, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Micropore and mesopore; Cyclic gas adsorption desorption; N-2 and CO2 adsorption; Fractal dimensions; METHANE ADSORPTION; THEORETICAL-MODEL; DIFFUSION; DESORPTION; NITROGEN; CO2; SHRINKAGE; PRESSURE; SORPTION; STRAIN;
D O I
10.1016/j.fuel.2018.06.004
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The characteristics of micropore (0.32-2 nm), mesopores (2-50 nm) and fractal dimensions of bituminous coal during the process of cyclic gas adsorption/desorption were revealed by combining N-2 (77 K) and CO2 (273 K) adsorption experiments from microscopic aspect. The results indicate that the pore structure characterization in the coal matrix are changed, resulting in decreased mesopore volumes and increased micropore volumes. The mesopore volumes are mainly constituted by the pores of 10-20, and 20-30 nm, and it will increase at first and then decrease with the increasing pressures. The maximum change of micropore volume reaches 65.6%, indicating a great effect on the micropores influenced by pressures. In addition, the main micropore size range, major peak and the model diameter of coals all increase with the increasing pressures, the higher the adsorb pressure is, the higher swelling is. With the help of the conceptual models, we then analyzed the variation reasons, which may be result from transformation of mesopores and the connection of the inaccessible pores. D-1 and D-2 in #1 and D-2 in #2 all increase with the increasing adsorption pressures, enhancing the roughness of surface and complexity of structure, while D-1 in #2 shows an opposite property. The study of variations of microscopic pore structure by cyclic adsorption/desorption was aimed at providing new understanding for the exploration of the changes of diffusion and permeability.
引用
收藏
页码:495 / 505
页数:11
相关论文
共 50 条
  • [1] Experimental Study on Fractal Characteristics of Adsorption Pore Structure of Coal
    Wang, Wendi
    Liu, Zhen
    Zhang, Mingrui
    Yang, He
    PROCESSES, 2023, 11 (01)
  • [2] Experimental study on effects of tetrahydrofuran soaking on pore structure and gas adsorption and desorption characteristics of coal
    Sun, Wanjie
    Liang, Yunpei
    Li, Quangui
    Li, Ziqiang
    Zhao, Zhengduo
    Zheng, Xuewen
    Wang, Mingjie
    Liu, Suyu
    Wu, Zhaopeng
    POWDER TECHNOLOGY, 2024, 445
  • [3] EXPERIMENTAL STUDY ON THE CHARACTERIZATION OF PORE STRUCTURE AND PORE FRACTAL CHARACTERISTICS OF COAL BASED ON LIQUID NITROGEN ADSORPTION
    Zhang, Ruigang
    Zeng, Chunlin
    Cheng, Jun
    Li, Changlin
    FRESENIUS ENVIRONMENTAL BULLETIN, 2020, 29 (12): : 10436 - 10445
  • [4] Experimental study on the influence of pulsed ultrasound on coal pore structure and gas desorption characteristics
    Lin H.
    Han S.
    Yang E.
    Li S.
    Wang R.
    Hao H.
    Shuang H.
    Yan M.
    Caikuang yu Anquan Gongcheng Xuebao/Journal of Mining and Safety Engineering, 2022, 39 (06): : 1235 - 1245
  • [5] EXPERIMENTAL STUDY ON PORE STRUCTURE AND FRACTAL CHARACTERISTICS OF TECTONIC COAL
    Guo, Dongxin
    Gao, Liqun
    Zhang, Ye
    Wang, Wei
    Zhang, Hualian
    Fang, Guangjian
    Zhang, Yuelei
    Huang, Zhenhua
    Li, Jun
    FRESENIUS ENVIRONMENTAL BULLETIN, 2019, 28 (11): : 8282 - 8291
  • [6] Experimental study of pore structure and fractal characteristics of pulverized intact coal and tectonic coal by low temperature nitrogen adsorption
    Wang, Zhenyang
    Cheng, Yuanping
    Qi, Yuxiao
    Wang, Ranpeng
    Wang, Liang
    Jiang, Jingyu
    POWDER TECHNOLOGY, 2019, 350 : 15 - 25
  • [7] Experimental investigation on the effect of multiscale pore characteristics of tectonic coal on gas adsorption/desorption and diffusion characteristics
    Guo, Haijun
    Gao, Zheng
    Yu, Yingjie
    Wang, Kai
    Yuan, Liang
    Wang, Liang
    Feng, Hui
    Ren, Bo
    Zhang, Hao
    POWDER TECHNOLOGY, 2024, 444
  • [8] Experimental Study of the Pore Structure and Gas Desorption Characteristics of a Low-Rank Coal: Impact of Moisture
    Chen, Mingyi
    Chen, Xiaoyun
    Zhang, Xuejie
    Tian, Fuchao
    Sun, Weili
    Yang, Yumeng
    Zhang, Tonghao
    ACS OMEGA, 2022, 7 (42): : 37293 - 37303
  • [9] Experimental Study on Pore Characteristics and Fractal Dimension Calculation of Pore Structure of Aerated Concrete Block
    Fu, Jun
    Yu, Yue
    ADVANCES IN CIVIL ENGINEERING, 2019, 2019
  • [10] Pore Fractal Dimensions of Bituminous Coal Reservoirs in North China and Their Impact on Gas Adsorption Capacity
    Liu, Xianfeng
    Kong, Xiangguo
    Nie, Baisheng
    Song, Dazhao
    He, Xueqiu
    Wang, Longkang
    NATURAL RESOURCES RESEARCH, 2021, 30 (06) : 4585 - 4596