Energy conserving and dissipative time finite element schemes for N-body stiff problems

被引:4
|
作者
Bui, QV [1 ]
机构
[1] Univ Liege, LTAS, Continuum & Thermodynam Mech Dept, B-4000 Liege 1, Belgium
关键词
Galerkin finite element method; dynamically tuneable integration; energy conservation; numerical dissipation;
D O I
10.1002/nme.1110
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Petrov-Gaterkin finite element method is adopted to develop a family of temporal integrators, which preserves the feature of energy conservation or numerical dissipation for non-linear N-body dynamical systems. This leads to an enhancement of numerical stability and the integrators may therefore offer some advantage for the numerical solution of stiff systems in long-term simulations. Dynamically tuneable numerical integration is exploited to improve the accuracy of the time-stepping schemes. Representative simulations for simple non-linear systems show the performance of the schemes in controlling over or damping out unresolved high frequencies. Copyright (C) 2004 John Wiley Sons, Ltd.
引用
收藏
页码:1359 / 1389
页数:31
相关论文
共 50 条
  • [1] A FINITE ELEMENT BASED P3M METHOD FOR N-BODY PROBLEMS
    Beams, Natalie N.
    Olson, Luke N.
    Freund, Jonathan B.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (03): : A1538 - A1560
  • [2] A note on the equivalence of two recent time-integration schemes for N-body problems
    Graham, E
    Jelenic, G
    Crisfield, MA
    COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 2002, 18 (09): : 615 - 620
  • [3] A momentum-conserving N-body scheme with individual time steps
    Zhu, Qirong
    NEW ASTRONOMY, 2021, 85
  • [4] ENERGY CONSERVING, ARBITRARY ORDER NUMERICAL-SOLUTIONS OF THE N-BODY PROBLEM
    MARCINIAK, A
    NUMERISCHE MATHEMATIK, 1984, 45 (02) : 207 - 218
  • [5] ALGEBRAIC, ENERGY CONSERVING FORMULATION OF CLASSICAL MOLECULAR AND NEWTONIAN N-BODY INTERACTION
    GREENSPAN, D
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 79 (02) : 423 - 427
  • [6] Conservation properties of a time FE method.: Part I:: time-stepping schemes for N-body problems
    Betsch, P
    Steinmann, P
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2000, 49 (05) : 599 - 638
  • [7] The negative energy N-body problem has finite diameter
    Montgomery, Richard
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2025, 137 (02):
  • [8] Constrained n-Body Problems
    Szuminski, Wojciech
    Przybylska, Maria
    APPLIED NON-LINEAR DYNAMICAL SYSTEMS, 2014, 93 : 305 - 317
  • [9] CLOSED ORBITS OF FIXED ENERGY FOR A CLASS OF N-BODY PROBLEMS
    AMBROSETTI, A
    COTIZELATI, V
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1992, 9 (02): : 187 - 200
  • [10] Energy conserving upwinded compatible finite element schemes for the rotating shallow water equations
    Wimmer, Golo A.
    Cotter, Colin J.
    Bauer, Werner
    JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 401