On existence and asymptotic behavior of the time-dependent solution of the M/G/1 queueing model with optional deterministic server vacations

被引:2
|
作者
Kasim, Ehmet [1 ]
Gupur, Geni [1 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
基金
中国国家自然科学基金;
关键词
M/G/1 queueing model with optional deterministic server vacations; C-0-semigroup; Dispersive operator; Resolvent set; Eigenvalue;
D O I
10.1007/s13370-019-00739-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the M/G/1 queueing model with optional deterministic server vacations. Firstly, we convert the system into an abstract Cauchy problem, then we prove well-posedenss of the system by using the operator semigroup methods. Next, we investigate asymptotic behavior of its time-dependent solution by studying spectral properties of the corresponding operator. Therefore, we conclude that the time-dependent solution of the model strongly converges to its steady-state solution.
引用
收藏
页码:507 / 537
页数:31
相关论文
共 50 条