Object Detection and Tracking through Non-Linear Filtering and Fusion of Lidar and Position Data

被引:0
|
作者
Thuy, Michael [1 ]
Habigt, Julian [2 ]
Leon, Fernando Puente [1 ]
机构
[1] Karlsruher Inst Technol, Inst Ind Informat Tech, D-76187 Karlsruhe, Germany
[2] Tech Univ Munich, Lehrstuhl Datenverarbeitung, D-80333 Munich, Germany
关键词
Object detection; object tracking; data fusion; particle filter; laser scanner; model-based measurement;
D O I
10.1524/teme.2010.0057
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
This article presents a new method of object detection and tracking in the context of driver assistance systems and autonomous automobiles. Two lidar scanners that scan the environment periodically serve as the data source. The sensors' raw data is then fused with high precision positioning data in order to transform it into a global coordinate system. Then, the transformed data is used to feed the particle filter. Within this filter, an importance function evaluates the newly gained lidar points to weigh the individual particles. Finally, a cluster analysis in the observation space extracts the estimated object states.
引用
收藏
页码:243 / 249
页数:7
相关论文
共 50 条
  • [1] Non-linear matched filtering for object detection and tracking
    Noyer, JC
    Lanvin, P
    Benjelloun, M
    [J]. PATTERN RECOGNITION LETTERS, 2004, 25 (06) : 655 - 668
  • [2] NON-LINEAR MULTIMODAL OBJECT TRACKING BASED ON 2D LIDAR DATA
    Thuy, Michael
    Leon, Fernando Puente
    [J]. METROLOGY AND MEASUREMENT SYSTEMS, 2009, 16 (03) : 359 - 369
  • [3] Non-Linear, Shape Independent Object Tracking based on 2D Lidar Data
    Thuy, Michael
    Leon, Fernando Puente
    [J]. 2009 IEEE INTELLIGENT VEHICLES SYMPOSIUM, VOLS 1 AND 2, 2009, : 532 - 537
  • [4] Sequential linear filtering with non-linear position and Doppler measurements for target tracking
    Cheng, Ting
    Li, Lifu
    [J]. IET RADAR SONAR AND NAVIGATION, 2022, 16 (04): : 646 - 658
  • [5] A Kalman Filtering Based Data Fusion for Object Tracking
    Wu, Chin-Wen
    Chung, Yi-Nung
    Chung, Pau-Choo
    [J]. ICIEA 2010: PROCEEDINGS OF THE 5TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, VOL 4, 2010, : 569 - +
  • [6] Non-linear eigenspace visual object tracking
    Majeed, Iftikhar
    Arif, Omar
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2016, 55 : 363 - 374
  • [7] Camera-LiDAR Fusion for Object Detection,Tracking and Prediction
    Huang, Yuanxian
    Zhou, Jian
    Huang, Qi
    Li, Bijun
    Wang, Lanlan
    Zhu, Jialin
    [J]. Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 2024, 49 (06): : 945 - 951
  • [8] Object Tracking Based on the Fusion of Roadside LiDAR and Camera Data
    Wang, Shujian
    Pi, Rendong
    Li, Jian
    Guo, Xinming
    Lu, Youfu
    Li, Tao
    Tian, Yuan
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71 : 1 - 1
  • [9] Non-linear filtering for landmine detection on ground penetration radar data
    Tbarki, Khaoula
    Ben Said, Salma
    Ellouze, Nourredine
    [J]. 2016 2ND INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES FOR SIGNAL AND IMAGE PROCESSING (ATSIP), 2016, : 200 - 205
  • [10] Multi-Object Tracking with Object Candidate Fusion for Camera and LiDAR Data
    Yin, Huilin
    Lu, Yu
    Lin, Jia
    Schratter, Markus
    Watzenig, Daniel
    [J]. 2023 IEEE 26TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS, ITSC, 2023, : 2965 - 2970