A high-performance flexible triboelectric nanogenerator based on cellulose acetate nanofibers and micropatterned PDMS films as mechanical energy harvester and self-powered vibrational sensor

被引:72
|
作者
Varghese, Harris [1 ,2 ]
Hakkeem, Hasna M. Abdul [1 ,2 ]
Chauhan, Kanika [3 ]
Thouti, Eshwar [2 ,3 ]
Pillai, Saju [1 ,2 ]
Chandran, Achu [1 ,2 ]
机构
[1] CSIR Natl Inst Interdisciplinary Sci & Technol NII, Mat Sci & Technol Div, Thiruvananthapuram 695019, India
[2] Acad Sci & Innovat Res AcSIR, Ghaziabad 201002, India
[3] CSIR Cent Elect Engn Res Inst CEERI, Semicond Device Fabricat Grp, Pilani, India
关键词
TENG; Cellulose; PDMS; Vibrational sensor; Self-powered electronics; PAPER; LAYER;
D O I
10.1016/j.nanoen.2022.107339
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Triboelectric nanogenerators are emerging mechanical energy harvesting devices in the era of the Internet of Things (IoT) for powering small-scale electronic devices or functioning as state-of-the-art self-powered sensors. Furthermore, observing vibration patterns from different electronic gadgets helps in assessing the health of the gadgets and also allows to detect the downtime as well as faults pre-emptively. Here, a triboelectric nano generator based on electrospun cellulose acetate nanofibers and surface modified PDMS is fabricated for powering commercial sensors. In addition, the effect of surface patterning on PDMS film such as arrays of micropyramid and microdome structures on the output characteristics of TENG has been systematically investigated. The PDMS with micropyramidal arrays in combination with electrospun cellulose acetate nanofibers showed a massive enhancement (~180 times) in the power density of TENG, as compared to the flat PDMS film based device. The fabricated facile and flexible TENG with micropyramidal surface modification on PDMS can generate an output voltage of 400 V, short circuit current of 3 mA/m(2) and peak power density of 0.9 W/m(2) respectively. In addition, with a little tweak in the structure, the same cellulose acetate nanofiber-PDMS based TENG is transformed into an active self-powered vibration sensor. Utilizing this, the vibration profile of an electric-sewing machine is mapped under various frequencies of operation. Additionally, anomalous vibrational behaviours from different electronic gadgets such as hard disks and computer fans, as a result of mechanical imbalances, are also detected using the self-powered triboelectric vibrational sensor.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Self-powered flexible triboelectric touch sensor based on micro-pyramidal PDMS films and cellulose acetate nanofibers
    Varghese, Harris
    Hakkeem, Hasna M. Abdul
    Farman, Mohd
    Thouti, Eshwar
    Pillai, Saju
    Chandran, Achu
    RESULTS IN ENGINEERING, 2022, 16
  • [2] High-performance flexible self-powered triboelectric pressure sensor based on chemically modified micropatterned PDMS film
    Zhong, Yan
    Wang, Jiaqi
    Han, Lei
    Dai, Shengping
    Zhu, Hao
    Hua, Jing
    Cheng, Guanggui
    Ding, Jianning
    SENSORS AND ACTUATORS A-PHYSICAL, 2023, 349
  • [3] A self-powered active hydrogen sensor based on a high-performance triboelectric nanogenerator using a wrinkle-micropatterned PDMS film
    Uddin, A. S. M. Iftekhar
    Chung, Gwiy-Sang
    RSC ADVANCES, 2016, 6 (67): : 63030 - 63036
  • [4] High-performance flexible triboelectric nanogenerator based on porous aerogels and electrospun nanofibers for energy harvesting and sensitive self-powered sensing
    Mi, Hao-Yang
    Jing, Xin
    Zheng, Qifeng
    Fang, Liming
    Huang, Han-Xiong
    Turng, Lih-Sheng
    Gong, Shaoqin
    NANO ENERGY, 2018, 48 : 327 - 336
  • [5] High-performance triboelectric nanogenerator based on chitin for mechanical-energy harvesting and self-powered sensing
    Zhang, Jipeng
    Hu, Yang
    Lin, Xinghuan
    Qian, Xinyi
    Zhang, Lina
    Zhou, Jinping
    Lu, Ang
    Carbohydrate Polymers, 2022, 291
  • [6] High-performance triboelectric nanogenerator based on chitin for mechanical-energy harvesting and self-powered sensing
    Zhang, Jipeng
    Hu, Yang
    Lin, Xinghuan
    Qian, Xinyi
    Zhang, Lina
    Zhou, Jinping
    Lu, Ang
    CARBOHYDRATE POLYMERS, 2022, 291
  • [7] A triboelectric nanogenerator for mechanical energy harvesting and as self-powered pressure sensor
    Ding, Zhuyu
    Zou, Ming
    Yao, Peng
    Fan, Li
    MICROELECTRONIC ENGINEERING, 2022, 257
  • [8] High-performance triboelectric nanogenerator powered by flowing water for self-powered wireless sensor Platform
    Munirathinam, Karthikeyan
    Shanmugasundaram, Arunkumar
    Jeong, Yun-Jin
    Kim, Jong-Yun
    Lee, Dong-Weon
    CHEMICAL ENGINEERING JOURNAL, 2025, 505
  • [9] Kirigami-Based Flexible, High-Performance Piezoelectric/Triboelectric Hybrid Nanogenerator for Mechanical Energy Harvesting and Multifunctional Self-Powered Sensing
    Peng, Yongwei
    Li, Yongkang
    Yu, Wei
    ENERGY TECHNOLOGY, 2022, 10 (08)
  • [10] Flexible and Wearable PDMS-Based Triboelectric Nanogenerator for Self-Powered Tactile Sensing
    Wang, Jie
    Qian, Shuo
    Yu, Junbin
    Zhang, Qiang
    Yuan, Zhongyun
    Sang, Shengbo
    Zhou, Xiaohong
    Sun, Lining
    NANOMATERIALS, 2019, 9 (09)