Minimal and characteristic polynomials of symmetric matrices in characteristic two

被引:0
|
作者
Berhuy, Gregory [1 ]
机构
[1] Univ Grenoble Alpes, Inst Fourier, 100 Rue Maths, F-38610 Gieres, France
关键词
Symmetric matrices; Minimal polynomial; Characteristic polynomial; Eigenvalues; Symmetric bilinear forms; Transfer;
D O I
10.1016/j.jalgebra.2021.11.025
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let k be a field of characteristic two. We prove that a monic polynomial f is an element of k[X] of degree n >= 1 is the minimal/characteristic polynomial of a symmetric matrix with entries in k if and only if it is not the product of pairwise distinct inseparable irreducible polynomials. In this case, we prove that f is the minimal polynomial of a symmetric matrix of size n. We also prove that any element alpha is an element of k(alg) of degree n >= 1 is the eigenvalue of a symmetric matrix of size n or n + 1, the first case happening if and only if the minimal polynomial of alpha is separable. (c) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:525 / 549
页数:25
相关论文
共 50 条
  • [1] CHARACTERISTIC POLYNOMIALS OF SYMMETRIC MATRICES
    BENDER, EA
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 1968, 25 (03) : 433 - &
  • [2] Characteristic Polynomials¶of Real Symmetric Random Matrices
    E. Brézin
    S. Hikami
    [J]. Communications in Mathematical Physics, 2001, 223 : 363 - 382
  • [3] Characteristic polynomials of real symmetric random matrices
    Brézin, E
    Hikami, S
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 223 (02) : 363 - 382
  • [4] Characteristic polynomials of symmetric matrices over the univariate polynomial ring
    Hanselka, Christoph
    [J]. JOURNAL OF ALGEBRA, 2017, 487 : 340 - 356
  • [5] Small-Span Characteristic Polynomials of Integer Symmetric Matrices
    McKee, James
    [J]. ALGORITHMIC NUMBER THEORY, 2010, 6197 : 270 - 284
  • [6] Characteristic Polynomials of Random Matrices
    Edouard Brézin
    Shinobu Hikami
    [J]. Communications in Mathematical Physics, 2000, 214 : 111 - 135
  • [7] CHARACTERISTIC POLYNOMIALS OF SUPERTROPICAL MATRICES
    Niv, Adi
    [J]. COMMUNICATIONS IN ALGEBRA, 2014, 42 (02) : 528 - 539
  • [8] Characteristic polynomials of random matrices
    Brézin, E
    Hikami, S
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 214 (01) : 111 - 135
  • [9] Characteristic polynomials for quantum matrices
    Isaev, A
    Ogievetsky, O
    Pyatov, P
    Saponov, P
    [J]. SUPERSYMMETRIES AND QUANTUM SYMMETRIES, 1999, 524 : 322 - 330
  • [10] The Characteristic Polynomials of Symmetric Graphs
    Chbili, Nafaa
    Al Dhaheri, Shamma
    Tahnon, Mei Y.
    Abunamous, Amna A. E.
    [J]. SYMMETRY-BASEL, 2018, 10 (11):