On the number of components of the moduli schemes of stable torsion-free sheaves on integral curves

被引:2
|
作者
Ballico, E
机构
关键词
D O I
10.1090/S0002-9939-97-04216-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Here we give an upper bound for the number of irreducible components of the moduli scheme of stable rank r torsion-free sheaves of fixed degree on the integral curve X. This bound depends only on r, Sing(X),p(a)(X) and the corresponding number for the rank 1 case.
引用
收藏
页码:2819 / 2824
页数:6
相关论文
共 50 条
  • [1] Torsion-free sheaves and moduli of generalized spin curves
    Jarvis, TJ
    [J]. COMPOSITIO MATHEMATICA, 1998, 110 (03) : 291 - 333
  • [2] Torsion-free sheaves on nodal curves and triples
    Avritzer, D.
    Lange, H.
    Ribeiro, F. A.
    [J]. BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2010, 41 (03): : 421 - 447
  • [3] Torsion-free sheaves on nodal curves and triples
    D. Avritzer
    H. Lange
    F. A. Ribeiro
    [J]. Bulletin of the Brazilian Mathematical Society, New Series, 2010, 41 : 421 - 447
  • [4] Maximal subsheaves of torsion-free sheaves on nodal curves
    Bhosle, Usha N.
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2006, 74 : 59 - 74
  • [5] On the Hilbert scheme of the moduli space of torsion-free sheaves on surfaces
    Mata-Gutierrez, O.
    Roa-Leguizamon, L.
    Torres-Lopez, H.
    [J]. GLASGOW MATHEMATICAL JOURNAL, 2023, 65 (02) : 414 - 429
  • [6] Vertex operators and the geometry of moduli spaces of framed torsion-free sheaves
    Licata, Anthony
    Savage, Alistair
    [J]. SELECTA MATHEMATICA-NEW SERIES, 2010, 16 (02): : 201 - 240
  • [7] Rationality of moduli space of torsion-free sheaves over reducible curve
    Dey, Arijit
    Suhas, B. N.
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2018, 128 : 87 - 98
  • [8] Vertex operators and the geometry of moduli spaces of framed torsion-free sheaves
    Anthony Licata
    Alistair Savage
    [J]. Selecta Mathematica, 2010, 16 : 201 - 240
  • [9] GENERALIZED PARABOLIC BUNDLES AND APPLICATIONS TO TORSION-FREE SHEAVES ON NODAL CURVES
    BHOSLE, U
    [J]. ARKIV FOR MATEMATIK, 1992, 30 (02): : 187 - 215
  • [10] Brill-Noether theory on singular curves and torsion-free sheaves on surfaces
    Gómez, TL
    [J]. COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2001, 9 (04) : 725 - 756