A generalization of generalized Paley graphs and new lower bounds for R(3, q)

被引:0
|
作者
Wu, Kang [1 ]
Su, Wenlong [2 ]
Luo, Haipeng [3 ]
Xu, Xiaodong [3 ]
机构
[1] S China Normal Univ, Guangzhou 510631, Guangdong, Peoples R China
[2] Wuzhou Univ, Wuzhou 543002, Guangxi, Peoples R China
[3] Guangxi Acad Sci, Nanning 530007, Guangxi, Peoples R China
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2010年 / 17卷 / 01期
关键词
RAMSEY NUMBERS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Generalized Paley graphs are cyclic graphs constructed from quadratic or higher residues of finite fields. Using this type of cyclic graphs to study the lower bounds for classical Ramsey numbers, has high computing efficiency in both looking for parameter sets and computing clique numbers. We have found a new generalization of generalized Paley graphs, i.e. automorphism cyclic graphs, also having the same advantages. In this paper we study the properties of the parameter sets of automorphism cyclic graphs, and develop an algorithm to compute the order of the maximum independent set, based on which we get new lower bounds for 8 classical Ramsey numbers: R (3,22) >= 131, R (3,23) >= 137, R (3,25) >= 154, R (3,28) >= 173, R (3,29)>= 184, R (3,30) >= 190, R (3,31) >= 199, R (3,32) >= 214. Furthermore, we also get R (5,23) >= 521 based on R (3,22) >= 131. These nine results above improve their corresponding best known lower bounds
引用
收藏
页数:10
相关论文
共 50 条
  • [1] New lower bounds for seven classical Ramsey numbers R(3, q)
    Wu, Kang
    Su, Wenlong
    Luo, Haipeng
    Xu, Xiaodong
    [J]. APPLIED MATHEMATICS LETTERS, 2009, 22 (03) : 365 - 368
  • [2] Lower bounds for r2(K1 + G) and r3(K1 + G) from Paley graph and generalization
    Lin, Qizhong
    Li, Yusheng
    Shen, Jian
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2014, 40 : 65 - 72
  • [3] Two lower bounds for generalized 3-connectivity of Cartesian product graphs
    Gao, Hui
    Lv, Benjian
    Wang, Kaishun
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2018, 338 : 305 - 313
  • [4] New lower bounds on the size of (n,r)-arcs in PG(2,q)
    Braun, Michael
    [J]. JOURNAL OF COMBINATORIAL DESIGNS, 2019, 27 (11) : 682 - 687
  • [5] NEW LOWER BOUNDS FOR RAMSEY NUMBER R(P,Q-4)
    SONG, EM
    YE, WG
    LIU, YW
    [J]. DISCRETE MATHEMATICS, 1995, 145 (1-3) : 343 - 346
  • [6] Properties and new lower bounds of Ramsey numbers R (p,q;4)
    [J]. Huazhong Ligong Daxue Xuebao/Journal Huazhong (Central China) University of Science and Technology, 1995, 23 (Sup):
  • [7] Upper and Lower Bounds for Generalized Wiener Indices on Unicyclic Graphs
    Martinez-Pereza, Alvaro
    Rodriguez, Jose M.
    [J]. MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2022, 88 (01) : 179 - 198
  • [8] Some new lower bounds for energy of graphs
    Jahanbani, Akbar
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2017, 296 : 233 - 238
  • [9] Lower bounds for multicolor classical Ramsey numbers R(q,q,•••,q)
    Su, WL
    Luo, HP
    Li, Q
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1999, 42 (10): : 1019 - 1024
  • [10] New spectral lower bounds on the bisection width of graphs
    Bezrukov, S
    Elsässer, R
    Monien, B
    Preis, R
    Tillich, JP
    [J]. THEORETICAL COMPUTER SCIENCE, 2004, 320 (2-3) : 155 - 174