elliptic curves;
Koblitz conjecture;
mean values of arithmetic functions;
SIGMA(N)/N;
N/PHI(N);
THEOREM;
FIELD;
D O I:
10.2140/ant.2014.8.813
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
If E is an elliptic curve defined over Q and p is a prime of good reduction for E, let E(F-p) denote the set of points on the reduced curve modulo p. Define an arithmetic function ME(N) by setting M-E(N) := #{p : #E(F-p) = N}. Recently, David and the third author studied the average of M-E(N) over certain "boxes" of elliptic curves E. Assuming a plausible conjecture about primes in short intervals, they showed the following: for each N, the average of M-E(N) over a box with sufficiently large sides is similar to K*(N)/log N for an explicitly given function K*(N). The function K*(N) is somewhat peculiar: defined as a product over the primes dividing N, it resembles a multiplicative function at first glance. But further inspection reveals that it is not, and so one cannot directly investigate its properties by the usual tools of multiplicative number theory. In this paper, we overcome these difficulties and prove a number of statistical results about K*(N). For example, we determine the mean value of K*(N) over all N, odd N and prime N, and we show that K*(N) has a distribution function. We also explain how our results relate to existing theorems and conjectures on the multiplicative properties of #E(F-p), such as Koblitz's conjecture.
机构:
UNIV LONDON GOLDSMITHS COLL, DEPT MATH & COMP SCI, LONDON SE14 6NW, ENGLANDUNIV LONDON GOLDSMITHS COLL, DEPT MATH & COMP SCI, LONDON SE14 6NW, ENGLAND
Smart, NP
Stephens, NM
论文数: 0引用数: 0
h-index: 0
机构:
UNIV LONDON GOLDSMITHS COLL, DEPT MATH & COMP SCI, LONDON SE14 6NW, ENGLANDUNIV LONDON GOLDSMITHS COLL, DEPT MATH & COMP SCI, LONDON SE14 6NW, ENGLAND
机构:
Univ Michigan, Dept Math, 2074 East Mall,530 Church St, Ann Arbor, MI 48109 USAUniv Michigan, Dept Math, 2074 East Mall,530 Church St, Ann Arbor, MI 48109 USA