The effect of graphene oxide on the mechanical properties, impermeability and corrosion resistance of cement mortar containing mineral admixtures

被引:61
|
作者
Liu, Changjiang [1 ]
Huang, Xiaochuan [2 ]
Wu, Yu-You [3 ]
Deng, Xiaowei [4 ]
Zheng, Zhoulian [5 ]
机构
[1] Guangzhou Univ, Sch Civil Engn, Guangzhou 510006, Peoples R China
[2] Chengdu Univ Technol, Coll Environm & Civil Engn, Chengdu 610059, Peoples R China
[3] Foshan Univ, Sch Transportat Civil Engn & Architecture, Foshan 528000, Guangdong, Peoples R China
[4] Univ Hong Kong, Dept Civil Engn, Pokfulam, Hong Kong 999077, Peoples R China
[5] Chongqing Univ, Sch Civil Engn, Chongqing 400045, Peoples R China
关键词
GO; Mortar; Mechanical properties; Impermeability; Corrosion resistance; PVA FIBER; MICROSTRUCTURE; DISPERSION; HYDRATION; SILICA; NANOSHEETS; COMPOSITES; STRENGTH; BEHAVIOR; FRESH;
D O I
10.1016/j.conbuildmat.2021.123059
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Graphene oxide (GO) is one of the nanomaterials that have attracted the most attention of researchers in recent years. Because of its excellent mechanical, thermal and electrical properties, it is widely used in the fields of energy, photoelectric, catalysis and materials, and it has shown broad development pro-spects. For the high demand of cement-based materials in buildings, as a new cement composites rein-forcement agent, GO has been widely studied by researchers. Based on previous studies, cement, silica fume (SF) and fly ash (FA) were used as composite cementitious materials in this experiment, and the effects of different GO contents (0.00%, 0.01%, 0.03%, 0.05%, 0.07%) on the mechanical properties of mortar were analyzed. In addition, the impermeability and sulfate resistance of the modified mortar were stud-ied. The results showed that under the same curing conditions and ages, when the GO content is 0.05%, the flexural strength of the specimens after 28 days of curing is the highest, reaching 10.8 MPa, and the improvement rate is 16.1%. When the GO content is 0.03%, the compressive strength of the specimens after 28 days of curing is the highest, reaching 64.5 MPa, and the improvement rate is 12.4%. In addition, when the dosage of GO is 0.03%, the durability of the mortar is also extremely improved. The imperme-ability of the mortar is 80% higher than the reference specimens. The strength retention rate under the action of sulfate corrosion is also the highest, which is 11.3% and 6.7% higher than the compressive strength and flexural strength of the reference specimens that corroded for 3 months. GO was proved to be an excellent reinforcement agent for cement-based materials. Through SEM and XRD analysis, it was found that GO promoted the hydration reaction, and it played a filling effect and template role in the mortar matrix. Its two-dimensional lamella structure regulates the morphology of hydration products and enhances the interface adhesion between the matrix and the aggregate. In addition, its nano-filling effect eliminates a large number of micro-pores in the mortar and increases the density of the matrix. (c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Mechanical Properties of Cement Mortar Composites Containing Graphene Oxide
    Gholampour, A.
    Kiamahalleh, M. Valizadeh
    Tran, D. N. H.
    Ozbakkaloglu, T.
    Losic, D.
    PROCEEDINGS OF THE 25TH AUSTRALASIAN CONFERENCE ON MECHANICS OF STRUCTURES AND MATERIALS (ACMSM25), 2020, 37 : 141 - 147
  • [2] Strength and corrosion properties of Portland cement mortar and concrete with mineral admixtures
    Shi, Xianming
    Yang, Zhengxian
    Liu, Yajun
    Cross, Doug
    CONSTRUCTION AND BUILDING MATERIALS, 2011, 25 (08) : 3245 - 3256
  • [3] MECHANICAL PROPERTIES OF CEMENT MORTAR WITH GRAPHENE OXIDE
    Krystek, Malgorzata
    ARCHITECTURE CIVIL ENGINEERING ENVIRONMENT, 2019, 12 (01) : 91 - 96
  • [4] Effect of graphene oxide on fresh, hardened and mechanical properties of cement mortar
    Sreeja, Keerthipati
    Kumar, T. Naresh
    MATERIALS TODAY-PROCEEDINGS, 2021, 46 : 2235 - 2239
  • [5] Effect of Graphene Oxide/Graphene Hybrid on Mechanical Properties of Cement Mortar and Mechanism Investigation
    Sun, Hongfang
    Ling, Li
    Ren, Zhili
    Memon, Shazim Ali
    Xing, Feng
    NANOMATERIALS, 2020, 10 (01)
  • [7] Effect of graphene oxide and nano silica on mechanical and durability properties of cement mortar
    Vasudevareddy, Pothala
    Reddy, K. Chandrasekhar
    MATERIALS TODAY-PROCEEDINGS, 2022, 60 : 1042 - 1050
  • [8] Effect of Graphene Oxide on Mechanical Properties of Cement Mortar and its Strengthening Mechanism
    Wang, Yahui
    Yang, Jiawen
    Ouyang, Dong
    MATERIALS, 2019, 12 (22)
  • [9] Influence of Graphene Oxide on Mechanical Properties and Durability of Cement Mortar
    Djenaoucine, Lounis
    Picazo, Alvaro
    de la Rubia, Miguel Angel
    Moragues, Amparo
    Galvez, Jaime C.
    MATERIALS, 2024, 17 (06)
  • [10] Mechanical properties and microstructure of multilayer graphene oxide cement mortar
    Liu, Jun
    Zhao, Luxi
    Chang, Fei
    Chi, Lin
    FRONTIERS OF STRUCTURAL AND CIVIL ENGINEERING, 2021, 15 (04) : 1058 - 1070