Ray-Tracing Driven ANN Propagation Models for Indoor Environments at 28 GHz

被引:2
|
作者
Seretis, Aristeidis [1 ]
Hashimoto, Takahiro [1 ]
Zeng, Kun [2 ]
Sarris, Costas D. [1 ]
机构
[1] Univ Toronto, Edward S Rogers Sr Dept Elect & Comp Engn, Toronto, ON, Canada
[2] Huawei Technol Co Ltd, Chengdu, Peoples R China
关键词
D O I
10.1109/IEEECONF35879.2020.9330037
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Ray-tracing is widely used for radio propagation modeling of indoor environments, such as hallways and offices. Shooting and bouncing ray-tracing methods are faster than full-wave methods in such environments, especially as the frequency of operation increases following the new 5G specifications. Still, a machine learning approach can generalize a few ray-traced points into full signal strength maps of arbitrary resolution. In this paper, a feedforward standard artificial neural network is trained by ray-tracing data at 28 GHz to predict signal strength in Gamma-shaped corridor. The network's accuracy in reconstructing the actual signal levels is on par with that of the ray-tracer.
引用
收藏
页码:1029 / 1030
页数:2
相关论文
共 50 条
  • [1] Fast ray-tracing characterisation of indoor propagation channels at 60 GHz
    Dardari, D
    Minelli, L
    Tralli, V
    Andrisano, O
    [J]. 1997 IEEE 47TH VEHICULAR TECHNOLOGY CONFERENCE PROCEEDINGS, VOLS 1-3: TECHNOLOGY IN MOTION, 1997, : 989 - 993
  • [2] Indoor Propagation Estimation Combining Statistical Models with Ray-Tracing
    Hashimoto, Takahiro
    Nishioka, Yasuhiro
    Inasawa, Yoshio
    Miyashita, Hiroaki
    [J]. 2015 INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION (ISAP), 2015,
  • [3] 28GHz millimeter Wave Propagation Models Based on Ray-Tracing in Urban Scenario
    Guo, Bolun
    Wu, Yong
    Yang, Meiying
    Li, Jian
    [J]. 2015 IEEE 26TH ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR, AND MOBILE RADIO COMMUNICATIONS (PIMRC), 2015, : 2209 - 2213
  • [4] Fast ray-tracing method for calculating the propagation in indoor environments.
    Catedra, MF
    Perez, J
    de Adana, FS
    Gutierrez, O
    Cantalapiedra, J
    Gonzalez, I
    [J]. IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM - ANTENNAS: GATEWAYS TO THE GLOBAL NETWORK, VOLS 1-4, 1998, : 1656 - 1659
  • [5] 40 GHz Indoor Propagation Modelling Based on Ray-tracing Simulation and Measurement
    Shen, Yuyan
    Shao, Yu
    Liao, Xi
    Wang, Yang
    Zhang, Jie
    [J]. 2020 IEEE INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION AND NORTH AMERICAN RADIO SCIENCE MEETING, 2020, : 1279 - 1280
  • [6] Using efficient ray-tracing techniques to predict propagation losses in indoor environments
    Alves, F. A.
    Albuquerque, M. R. M. L.
    Silva, S. G.
    d'Assuncao, A. G.
    [J]. MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2007, 49 (04) : 854 - 858
  • [7] Realistic Human Exposure at 3.5 GHz and 28 GHz for Distributed and Collocated MaMIMO in Indoor Environments Using Hybrid Ray-Tracing and FDTD
    Wydaeghe, Robin
    Shikhantsov, Sergei
    Tanghe, Emmeric
    Vermeeren, Gunter
    Martens, Luc
    Demeester, Piet
    Joseph, Wout
    [J]. IEEE ACCESS, 2022, 10 : 130996 - 131004
  • [8] 60 GHz indoor propagation studies for wireless communications based on a ray-tracing method
    Lim, C.-P.
    Lee, M.
    Burkholder, R. J.
    Volakis, J. L.
    Marhefka, R. J.
    [J]. EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING, 2007, 2007 (1)
  • [9] 60 GHz Indoor Propagation Studies for Wireless Communications Based on a Ray-Tracing Method
    C.-P. Lim
    M. Lee
    R. J. Burkholder
    J. L. Volakis
    R. J. Marhefka
    [J]. EURASIP Journal on Wireless Communications and Networking, 2007
  • [10] Intelligent Ray-Tracing: an efficient indoor ray propagation model
    Reza, Ahmed Wasif
    Dimyati, Kaharudin
    Noordin, Kamarul Ariffin
    Sarker, Md. Sumon
    [J]. IEICE ELECTRONICS EXPRESS, 2011, 8 (22): : 1920 - 1926