General Meta-Model Framework for Surrogate-Based Numerical Optimization

被引:3
|
作者
Luksic, Ziga [1 ]
Tanevski, Jovan [2 ]
Dzeroski, Saso [2 ]
Todorovski, Ljuoco [1 ,2 ]
机构
[1] Univ Ljubljana, Ljubljana, Slovenia
[2] Jozef Stefan Inst, Ljubljana, Slovenia
来源
DISCOVERY SCIENCE, DS 2017 | 2017年 / 10558卷
关键词
DIFFERENTIAL EVOLUTION; PARAMETER-ESTIMATION; GLOBAL OPTIMIZATION; SYSTEMS BIOLOGY;
D O I
10.1007/978-3-319-67786-6_4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a novel, general framework for surrogate-based numerical optimization. We introduce the concept of a modular meta model that can be easily coupled with any optimization method. It incorporates a dynamically constructed surrogate that efficiently approximates the objective function. We consider two surrogate management strategies for deciding when to evaluate the surrogate and when to evaluate the true objective. We address the task of estimating parameters of non-linear models of dynamical biological systems from observations. We show that the meta model significantly improves the efficiency of optimization, achieving up to 50% reduction of the time needed for optimization and substituting up to 63% of the total number of evaluations of the objective function. The improvement is a result of the use of an adaptive management strategy learned from the history of objective evaluations.
引用
收藏
页码:51 / 66
页数:16
相关论文
共 50 条
  • [1] Meta-Model Framework for Surrogate-Based Parameter Estimation in Dynamical Systems
    Luksic, Ziga
    Tanevski, Jovan
    Dzeroski, Saso
    Todorovski, Ljupco
    [J]. IEEE ACCESS, 2019, 7 : 181829 - 181841
  • [2] Surrogate-Based Superstructure Optimization Framework
    Henao, Carlos A.
    Maravelias, Christos T.
    [J]. AICHE JOURNAL, 2011, 57 (05) : 1216 - 1232
  • [3] An Ensemble Surrogate-Based Framework for Expensive Multiobjective Evolutionary Optimization
    Lin, Qiuzhen
    Wu, Xunfeng
    Ma, Lijia
    Li, Jianqiang
    Gong, Maoguo
    Coello, Carlos A. Coello
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2022, 26 (04) : 631 - 645
  • [4] SURROGATE MODEL SELECTION FOR DESIGN SPACE APPROXIMATION AND SURROGATE-BASED OPTIMIZATION
    Williams, B. A.
    Cremaschi, S.
    [J]. PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON FOUNDATIONS OF COMPUTER-AIDED PROCESS DESIGN, 2019, 47 : 353 - 358
  • [5] Surrogate-based analysis and optimization
    Queipo, NV
    Haftka, RT
    Shyy, W
    Goel, T
    Vaidyanathan, R
    Tucker, PK
    [J]. PROGRESS IN AEROSPACE SCIENCES, 2005, 41 (01) : 1 - 28
  • [6] A surrogate-based framework for feasibility-driven optimization of expensive simulations
    Tian, Huayu
    Ierapetritou, Marianthi G.
    [J]. AICHE JOURNAL, 2024, 70 (05)
  • [7] Recent advances in surrogate-based optimization
    Forrester, Alexander I. J.
    Keane, Andy J.
    [J]. PROGRESS IN AEROSPACE SCIENCES, 2009, 45 (1-3) : 50 - 79
  • [8] Surrogate-Based Optimization of SMT Inductors
    Riener, Christian
    Reinbacher-Koestinger, Alice
    Bauernfeind, Thomas
    Kvasnicka, Samuel
    Roppert, Klaus
    Kaltenbacher, Manfred
    [J]. 2024 IEEE 21ST BIENNIAL CONFERENCE ON ELECTROMAGNETIC FIELD COMPUTATION, CEFC 2024, 2024,
  • [9] Setting targets for surrogate-based optimization
    Nestor V. Queipo
    Salvador Pintos
    Efrain Nava
    [J]. Journal of Global Optimization, 2013, 55 : 857 - 875
  • [10] Variable Reduction for Surrogate-Based Optimization
    Rehbach, Frederik
    Gentile, Lorenzo
    Bartz-Beielstein, Thomas
    [J]. GECCO'20: PROCEEDINGS OF THE 2020 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2020, : 1177 - 1185