Statistical system based on p-adic numbers

被引:1
|
作者
Terasawa, Mikoto [1 ]
Nojiri, Shin'ichi [1 ,2 ]
机构
[1] Nagoya Univ, Dept Phys, Nagoya, Aichi 4648602, Japan
[2] Nagoya Univ, Kobayashi Maskawa Inst Origin Particles & Univers, Nagoya, Aichi 4648602, Japan
关键词
D O I
10.1016/j.physletb.2021.136410
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We propose statistical systems based on p-adic numbers. In the systems, the Hamiltonian is a standard real number which is given by a map from the p-adic numbers. Therefore we can introduce the temperature as a real number and calculate the thermodynamical quantities like free energy, thermodynamical energy, entropy, specific heat, etc. Although we consider a very simple system, which corresponds to a free particle moving in one dimensional space, we find that there appear the behaviors like phase transition in the system. Usually in order that a phase transition occurs, we need a system with an infinite number of degrees of freedom but in the system where the dynamical variable is given by p-adic number, even if degree of freedom is unity, there might occur the phase transition. (C) 2021 The Author(s). Published by Elsevier B.V.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] On approximation of p-adic numbers by p-adic algebraic numbers
    Beresnevich, VV
    Bernik, VI
    Kovalevskaya, EI
    JOURNAL OF NUMBER THEORY, 2005, 111 (01) : 33 - 56
  • [2] P-ADIC NUMBERS
    BARSKY, D
    CHRISTOL, G
    RECHERCHE, 1995, 26 (278): : 766 - 771
  • [3] P-ADIC NUMBERS IN PHYSICS
    BREKKE, L
    FREUND, PGO
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1993, 233 (01): : 1 - 66
  • [4] The frame of the p-adic numbers
    Avila, F.
    TOPOLOGY AND ITS APPLICATIONS, 2020, 273
  • [5] Simultaneous approximation problems of p-adic numbers and p-adic knapsack cryptosystems - Alice in p-adic numberland
    Inoue H.
    Kamada S.
    Naito K.
    P-Adic Numbers, Ultrametric Analysis, and Applications, 2016, 8 (4) : 312 - 324
  • [6] Geometry of P-adic numbers.
    Monna, AF
    PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN, 1942, 45 (6/10): : 981 - 986
  • [7] Bernoulli numbers in p-adic analysis
    Kim, MS
    Son, JW
    APPLIED MATHEMATICS AND COMPUTATION, 2003, 146 (01) : 289 - 297
  • [8] P-ADIC ANALYSIS AND BERNOULLI NUMBERS
    BARSKY, D
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1976, 283 (16): : 1069 - 1072
  • [9] Relaxed algorithms for p-adic numbers
    Berthomieu, Jeremy
    van der Hoeven, Joris
    Lecerf, Gregoire
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2011, 23 (03): : 541 - 577
  • [10] Algebraic independence of p-adic numbers
    Nesterenko, Yu. V.
    IZVESTIYA MATHEMATICS, 2008, 72 (03) : 565 - 579