共 50 条
Weak rate of convergence of the Euler-Maruyama scheme for stochastic differential equations with non-regular drift
被引:22
|作者:
Kohatsu-Higa, Arturo
[1
]
Lejay, Antoine
[2
,3
,4
]
Yasuda, Kazuhiro
[5
]
机构:
[1] Ritsumeikan Univ, Dept Math Sci, 1-1-1 Nojihigashi, Kusatsu, Shiga 5258577, Japan
[2] Japan Sci & Technol Agcy, 1-1-1 Nojihigashi, Kusatsu, Shiga 5258577, Japan
[3] Univ Lorraine, IECL, UMR 7502, F-54500 Vandoeuvre Les Nancy, France
[4] CNRS, IECL, UMR 7502, F-54500 Vandoeuvre Les Nancy, France
[5] INRIA, F-54500 Villers Les Nancy, France
关键词:
Stochastic differential equation;
Euler-Maruyama scheme;
Discontinuous drift;
Weak rate of convergence;
Malliavin calculus;
MALLIAVIN CALCULUS;
APPROXIMATION;
DIFFUSION;
BOUNDS;
SDES;
D O I:
10.1016/j.cam.2017.05.015
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We consider an Euler-Maruyama type approximation method for a stochastic differential equation (SDE) with a non-regular drift and regular diffusion coefficient. The method regularizes the drift coefficient within a certain class of functions and then the Euler-Maruyama scheme for the regularized scheme is used as an approximation. This methodology gives two errors. The first one is the error of regularization of the drift coefficient within a given class of parametrized functions. The second one is the error of the regularized Euler -Maruyama scheme. After an optimization procedure with respect to the parameters we obtain various rates, which improve other known results. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:138 / 158
页数:21
相关论文