Upper bounds for the regularity of powers of edge ideals of graphs

被引:10
|
作者
Jayanthan, A., V [1 ]
Selvaraja, S. [2 ]
机构
[1] Indian Inst Technol Madras, Dept Math, Chennai 600036, Tamil Nadu, India
[2] Chennai Math Inst, H1,SIPCOT IT Pk, Chennai 603103, Tamil Nadu, India
关键词
Castelnuovo-Mumford regularity; Powers of edge ideals; Vertex decomposable graphs;
D O I
10.1016/j.jalgebra.2021.01.030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite simple graph and I(G) denote the corresponding edge ideal. In this paper, we obtain upper bounds for the Castelnuovo-Mumford regularity of I(G)(q) in terms of certain combinatorial invariants associated with G. We also prove a weaker version of a conjecture by Alilooee, Banerjee, Beyarslan and Ha on an upper bound for the regularity of I(G)(q) and we prove the conjectured upper bound for the class of vertex decomposable graphs. Using these results, we explicitly compute the regularity of I(G)(q) for several classes of graphs. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:184 / 205
页数:22
相关论文
共 50 条