A simulated annealing-based learning algorithm for Boolean DNF

被引:0
|
作者
Albrecht, A [1 ]
Steinhöfel, K
机构
[1] Univ Hertfordshire, Dept Comp Sci, Hatfield AL10 9AB, Herts, England
[2] GMD Natl Res Ctr IT, D-12489 Berlin, Germany
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We describe a stochastic algorithm learning Boolean functions from positive and negative examples. The Boolean functions are represented by disjunctive normal form formulas. Given a target DNF F depending on n variables and a set of uniformly distributed positive and negative examples, our algorithm computes a hypothesis H that rejects a given fraction of negative examples and has an epsilon -bounded error on positive examples. The stochastic algorithm utilises logarithmic cooling schedules for inhomogeneous Markov chains. The paper focuses on experimental results and comparisons with a previous approach where all negative examples have to be rejected [4]. The computational experiments provide evidence that a relatively high percentage of correct classifications on additionally presented examples can be achieved, even when misclassifications are allowed on negative examples. The detailed convergence analysis will be presented in a forthcoming paper [3].
引用
收藏
页码:193 / 204
页数:12
相关论文
共 50 条
  • [1] A simulated annealing-based learning algorithm for blockdiagonal recurrent neural networks
    Mastorocostas, PA
    Varsamis, DN
    Mastorocostas, CA
    [J]. PROCEEDINGS OF THE IASTED INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND APPLICATIONS, 2006, : 244 - +
  • [2] A Novel Simulated Annealing-Based Learning Algorithm for Training Support Vector Machines
    Dantas Dias, Madson L.
    Rocha Neto, Ajalmar R.
    [J]. INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS (ISDA 2016), 2017, 557 : 341 - 351
  • [3] A simulated annealing-based algorithm for selecting balanced samples
    Benedetti, Roberto
    Dickson, Maria Michela
    Espa, Giuseppe
    Pantalone, Francesco
    Piersimoni, Federica
    [J]. COMPUTATIONAL STATISTICS, 2022, 37 (01) : 491 - 505
  • [4] A simulated annealing-based multiobjective optimization algorithm: AMOSA
    Bandyopadhyay, Sanghamitra
    Saha, Sriparna
    Maulik, Ujjwal
    Deb, Kalyanmoy
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2008, 12 (03) : 269 - 283
  • [5] A simulated annealing-based algorithm for selecting balanced samples
    Roberto Benedetti
    Maria Michela Dickson
    Giuseppe Espa
    Francesco Pantalone
    Federica Piersimoni
    [J]. Computational Statistics, 2022, 37 : 491 - 505
  • [6] A simulated annealing-based optimization algorithm for process planning
    Ma, GH
    Zhang, YF
    Nee, AYC
    [J]. INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2000, 38 (12) : 2671 - 2687
  • [7] A Simulated Annealing-Based Algorithm for Traveling Salesman Problem
    郭茂祖
    陈彬
    洪家荣
    [J]. Journal of Harbin Institute of Technology(New series), 1997, (04) : 35 - 38
  • [8] A simulated annealing-based maximum-margin clustering algorithm
    Seifollahi, Sattar
    Bagirov, Adil
    Borzeshi, Ehsan Zare
    Piccardi, Massimo
    [J]. COMPUTATIONAL INTELLIGENCE, 2019, 35 (01) : 23 - 41
  • [9] Simulated Annealing-Based Krill Herd Algorithm for Global Optimization
    Wang, Gai-Ge
    Guo, Lihong
    Gandomi, Amir Hossein
    Alavi, Amir Hossein
    Duan, Hong
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [10] Genetic Simulated Annealing-Based Kernel Vector Quantization Algorithm
    Zhao, Mengling
    Yin, Xinyu
    Yue, Huiping
    [J]. INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2017, 31 (05)