Maximizing the Science in the Era of Data-Driven Astronomy

被引:0
|
作者
Aloisi, Alessandra [1 ]
机构
[1] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA
关键词
D O I
暂无
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In the era of large astronomical data, data-driven multi-wavelength science will play an increasing role in Astronomy over the next decade. A range of new missions, facilities, and surveys including JWST, PanSTARRS, WHRST, LSST, ALMA, SKA, etc., will accumulate peta-bytes of data. The Space Telescope Science Institute (STScI) and its NASA archive, the Mikulski Archive for Space Telescopes (MAST), will continue to play a key role in this arena. I will review our archive strategic roadmap over the next several years and the new scientific investigations that this will enable. This includes the acquisition of new data collections, the unification of all archival services under the MAST portal, the partnerships with other Archives for exchange of data and definition of new interoperability standards, the production of new science-ready data holdings, the deployment of a scalable architecture for easy multi mission operations, the enabling of new on-line collaborative resources (e.g., science cloud), the creation of new tools for data discovery, data milling, data analysis, and data visualization. We will maximize the scientific return of the space Astrophysics programs by providing the Astronomical community with a peta-scale archival collection of data and a powerful open-science environment that will enable high-impact investigations in every area of Astrophysics from the far ultraviolet (FUV) to the infrared (IR).
引用
收藏
页码:3 / 12
页数:10
相关论文
共 50 条
  • [1] Data-driven predictions in the science of science
    Clauset, Aaron
    Larremore, Daniel B.
    Sinatra, Roberta
    [J]. SCIENCE, 2017, 355 (6324) : 477 - 480
  • [2] Data-driven science policy
    Fitzpatrick, Susan M.
    [J]. ISSUES IN SCIENCE AND TECHNOLOGY, 2016, 32 (04) : 17 - 18
  • [3] Data-Driven Science Policy
    Borner, Katy
    [J]. ISSUES IN SCIENCE AND TECHNOLOGY, 2016, 32 (03) : 26 - 28
  • [4] Scientific Journals in the Data-Driven Era
    Glowacki, Michal
    Demeter, Marton
    Mierzecka, Anna
    Adamski, Andrzej
    Kus, Michal
    Bukowski, Michal
    Madej, Malgorzata
    Mierzecka, Ania
    [J]. CENTRAL EUROPEAN JOURNAL OF COMMUNICATION, 2020, 13 (01): : 112 - 116
  • [5] The phylogeny of insects in the data-driven era
    Chesters, Douglas
    [J]. SYSTEMATIC ENTOMOLOGY, 2020, 45 (03) : 540 - 551
  • [6] International Workshop on Data-driven Science of Science
    Bu, Yi
    Liu, Meijun
    Zhai, Yujia
    Ding, Ying
    Xia, Feng
    Acuna, Daniel E.
    Zhang, Yi
    [J]. PROCEEDINGS OF THE 28TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2022, 2022, : 4856 - 4857
  • [7] Data-driven medicinal chemistry in the era of big data
    Lusher, Scott J.
    McGuire, Ross
    van Schaik, Rene C.
    Nicholson, C. David
    de Vlieg, Jacob
    [J]. DRUG DISCOVERY TODAY, 2014, 19 (07) : 859 - 868
  • [8] Data-driven Space Science at ESAC Science Data Centre
    Martinez, Beatriz
    Barbarisi, Isa
    Gonzalez, Juan
    Fernandez, Monica
    Laantee, Caroline
    Merin, Bruno
    Nieto, Sara
    Perez, Hector
    Salgado, Jesus
    de Teodoro, Pilar
    [J]. ASTRONOMICAL DATA ANALYSIS SOFTWARE AND SYSTEMS XXVIII, 2019, 523 : 409 - 412
  • [9] Three levels of data-driven science
    Igarashi, Yasuhiko
    Nagata, Kenji
    Kuwatani, Tatsu
    Omori, Toshiaki
    Nakanishi-Ohno, Yoshinori
    Okada, Masato
    [J]. INTERNATIONAL MEETING ON HIGH-DIMENSIONAL DATA-DRIVEN SCIENCE (HD3-2015), 2016, 699
  • [10] Special issue on Data-driven Science
    Tanu Malik
    [J]. Distributed and Parallel Databases, 2021, 39 : 413 - 413