Matrix factorizations and homological mirror symmetry on the torus

被引:2
|
作者
Knapp, Johanna [1 ]
Omer, Harun [1 ]
机构
[1] CERN, Dept Phys, Theory Div, CH-1211 Geneva 23, Switzerland
来源
关键词
AdS-CFT correspondence; brane dynamics in gauge theories;
D O I
10.1088/1126-6708/2007/03/088
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We consider matrix factorizations and homological mirror symmetry on the torus T-2 using a Landau-Ginzburg description. We identify the basic matrix factorizations of the Landau-Ginzburg superpotential and compute the full spectrum taking into account the explicit dependence on bulk and boundary moduli. We verify homological mirror symmetry by comparing three-point functions in the A-model and the B-model.
引用
收藏
页数:40
相关论文
共 50 条
  • [1] HOMOLOGICAL MIRROR SYMMETRY FOR THE 4-TORUS
    Abouzaid, Mohammed
    Smith, Ivan
    DUKE MATHEMATICAL JOURNAL, 2010, 152 (03) : 373 - 440
  • [2] Lagrangian Torus Fibrations and Homological Mirror Symmetry for the Conifold
    Chan, Kwokwai
    Pomerleano, Daniel
    Ueda, Kazushi
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 341 (01) : 135 - 178
  • [3] Lagrangian Torus Fibrations and Homological Mirror Symmetry for the Conifold
    Kwokwai Chan
    Daniel Pomerleano
    Kazushi Ueda
    Communications in Mathematical Physics, 2016, 341 : 135 - 178
  • [4] Dual torus fibrations and homological mirror symmetry for An-singularities
    Chan, Kwokwai
    Ueda, Kazushi
    COMMUNICATIONS IN NUMBER THEORY AND PHYSICS, 2013, 7 (02) : 361 - 396
  • [5] Matrix factorizations and mirror symmetry: the cubic curve
    Brunner, Ilka
    Herbst, Manfred
    Lerche, Wolfgang
    Walcher, Johannes
    JOURNAL OF HIGH ENERGY PHYSICS, 2006, (11):
  • [6] Tropical Coamoeba and Torus-Equivariant Homological Mirror Symmetry for the Projective Space
    Masahiro Futaki
    Kazushi Ueda
    Communications in Mathematical Physics, 2014, 332 : 53 - 87
  • [7] Tropical Coamoeba and Torus-Equivariant Homological Mirror Symmetry for the Projective Space
    Futaki, Masahiro
    Ueda, Kazushi
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 332 (01) : 53 - 87
  • [8] Homological mirror symmetry for singularities
    Ebeling, Wolfgang
    REPRESENTATION THEORY - CURRENT TRENDS AND PERSPECTIVES, 2017, : 75 - 107
  • [9] Meet Homological Mirror Symmetry
    Ballard, Matthew Robert
    MODULAR FORMS AND STRING DUALITY, 2008, 54 : 191 - 224
  • [10] Planar homological mirror symmetry
    Konishi, Eiji
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2007, 22 (29): : 5351 - 5368