Dynamic behavior of amplitude detection Kelvin force microscopy in ultrahigh vacuum

被引:9
|
作者
Diesinger, H. [1 ]
Deresmes, D. [1 ]
Nys, J. -P. [1 ]
Melin, T. [1 ]
机构
[1] CNRS, IEMN, UMR 8520, F-59652 Villeneuve Dascq, France
关键词
Non-contact atomic force microscopy; (AFM); Kelvin force microscopy; SENSITIVITY; CANTILEVER;
D O I
10.1016/j.ultramic.2009.10.016
中图分类号
TH742 [显微镜];
学科分类号
摘要
The acquisition rate of all scanning probe imaging techniques with feedback control is limited by the dynamic response of the control loops. Performance criteria are the control loop bandwidth and the output signal noise power spectral density. Depending on the acceptable noise level, it may be necessary to reduce the sampling frequency below the bandwidth of the control loop. In this work, the frequency response of a vacuum Kelvin force microscope with amplitude detection (AM-KFM) using a digital signal processing (DSP) controller is characterized and optimized. Then, the main noise source and its impact on the output signal is identified. A discussion follows on how the system design can be optimized with respect to output noise. Furthermore, the interaction between Kelvin and distance control loop is studied, confirming the beneficial effect of KFM on topography artefact reduction in the frequency domain. The experimental procedure described here can be generalized to other systems and allows to locate the performance limitations. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:162 / 169
页数:8
相关论文
共 50 条
  • [21] High potential sensitivity in heterodyne amplitude-modulation Kelvin probe force microscopy
    Sugawara, Yasuhiro
    Kou, Lili
    Ma, Zongmin
    Kamijo, Takeshi
    Naitoh, Yoshitaka
    Li, Yan Jun
    APPLIED PHYSICS LETTERS, 2012, 100 (22)
  • [22] Pulsed Force Kelvin Probe Force Microscopy
    Jakob, Devon S.
    Wang, Haomin
    Xu, Xiaoji G.
    ACS NANO, 2020, 14 (04) : 4839 - 4848
  • [23] Dynamic force microscopy and Kelvin probe force microscopy of KBr film on InSb(001) surface at submonolayer coverage
    Krok, F
    Kolodziej, JJ
    Such, B
    Czuba, P
    Struski, P
    Piatkowski, P
    Szymonski, M
    SURFACE SCIENCE, 2004, 566 : 63 - 67
  • [24] PREDICTABLE BEHAVIOR OF ORGANIC PHOTOVOLTAIC CELLS BY KELVIN PROBE FORCE MICROSCOPY
    Roche, R.
    Lereu, A. L.
    Dumas, Ph.
    PHYSICS, CHEMISTRY AND APPLICATIONS OF NANOSTRUCTURES: REVIEWS AND SHORT NOTES, 2013, : 480 - 486
  • [25] Pulsed Force Kelvin Probe Force Microscopy through Integration of Lock-In Detection
    Zahmatkeshsaredorahi, Amirhossein
    Jakob, Devon S.
    Fang, Hui
    Fakhraai, Zahra
    Xu, Xiaoji G.
    NANO LETTERS, 2023, 23 (19) : 8953 - 8959
  • [26] Force gradient sensitive detection in lift-mode Kelvin probe force microscopy
    Ziegler, Dominik
    Stemmer, Andreas
    NANOTECHNOLOGY, 2011, 22 (07)
  • [27] New method for electrostatic force gradient microscopy observations and Kelvin measurements under vacuum
    Portes, L.
    Ramonda, M.
    Arinero, R.
    Girard, P.
    ULTRAMICROSCOPY, 2007, 107 (10-11) : 1027 - 1032
  • [28] FRICTION FORCE MICROSCOPY IN ULTRAHIGH-VACUUM - AN ATOMIC-SCALE STUDY
    LUTHI, R
    MEYER, E
    HAEFKE, H
    HOWALD, L
    GUNTHERODT, HJ
    GYALOG, T
    THOMAS, H
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1995, 209 : 143 - COLL
  • [29] Ultrahigh vacuum magnetic force microscopy on in situ grown iron thin films
    Leinenbach, P
    Losch, J
    Memmert, U
    Hartmann, U
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 1998, 66 (Suppl 1): : S1191 - S1194
  • [30] Detection of secondary phases in duplex stainless steel by magnetic force microscopy and scanning Kelvin probe force microscopy
    Ramirez-Salgado, J.
    Dominguez-Aguilar, M. A.
    Castro-Dominguez, B.
    Hernandez-Hernandez, P.
    Newman, R. C.
    MATERIALS CHARACTERIZATION, 2013, 86 : 250 - 262