Improved Sentiment Analysis for Teaching Evaluation Using Feature Selection and Voting Ensemble Learning Integration

被引:0
|
作者
Pong-Inwong, Chakrit [1 ]
Kaewmak, Konpusit [2 ]
机构
[1] Loei Rajabhat Univ, Fac Sci & Technol, Dept Comp Sci, Loei, Thailand
[2] Loei Rajabhat Univ, Fac Educ, Dept Phys, Loei, Thailand
关键词
voting ensemble; sentiment analysis; text mining; teaching evaluation; CLASSIFICATION;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Teaching evaluation system is widely used to assess and investigate the education quality. Presently, sentiment analysis contributes for student sentiment polarity detection in teaching evaluation which collects the feedback messages. Text mining techniques are broadly extended to classify the effective improvement of the sentiment polarity analysis. Furthermore, the feedback messages from opened-end questions which stored in teaching evaluation system are selected for the classification. In addition, various methods used for classification in the experiment are Naive Bayes, ID3, J48 Decision tree. In this paper, reducing the feature in data preprocessing stage and teaching sentiment analysis using voting ensemble method of machine learning are proposed and compared with existing typical machine learning for sentiment analysis. The experimental results show that the voting ensemble learning integrate with Chi-Square feature selection exhibits higher than typical classifiers.
引用
收藏
页码:1222 / 1225
页数:4
相关论文
共 50 条
  • [1] Semantic relational machine learning model for sentiment analysis using cascade feature selection and heterogeneous classifier ensemble
    Yenkikar, Anuradha
    Babu, C. Narendra
    Hemanth, D. Jude
    PEERJ COMPUTER SCIENCE, 2022, 8
  • [2] Semantic relational machine learning model for sentiment analysis using cascade feature selection and heterogeneous classifier ensemble
    Yenkikar A.
    Babu C.N.
    Hemanth D.J.
    PeerJ Computer Science, 2022, 8
  • [3] Breast Cancer Prediction using Feature Selection and Ensemble Voting
    Nguyen, Quang H.
    Do, Trang T. T.
    Wang, Yijing
    Heng, Sin Swee
    Chen, Kelly
    Ang, Wei Hao Max
    Philip, Conceicao Edwin
    Singh, Misha
    Pham, Hung N.
    Nguyen, Binh P.
    Chua, Matthew C. H.
    PROCEEDINGS OF 2019 INTERNATIONAL CONFERENCE ON SYSTEM SCIENCE AND ENGINEERING (ICSSE), 2019, : 250 - 254
  • [4] Sentiment classification using hybrid feature selection and ensemble classifier
    Jain, Achin
    Jain, Vanita
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 42 (02) : 659 - 668
  • [5] Hybrid Ensemble Learning With Feature Selection for Sentiment Classification in Social Media
    Sharma, Sanur
    Jain, Anurag
    INTERNATIONAL JOURNAL OF INFORMATION RETRIEVAL RESEARCH, 2020, 10 (02) : 40 - 58
  • [6] Using Feature Selection in Combination with Ensemble Learning Techniques to Improve Tweet Sentiment Classification Performance
    Prusa, Joseph D.
    Khoshgoftaar, Taghi M.
    Napolitano, Amri
    2015 IEEE 27TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2015), 2015, : 186 - 193
  • [7] Towards an improved of teaching practice using Sentiment Analysis in Student Evaluation
    Pena-Torres, Jefferson A.
    INGENIERIA Y COMPETITIVIDAD, 2024, 26 (02):
  • [8] Efficient Twitter Sentiment Analysis System with Feature Selection and Classifier Ensemble
    Fouad, Mohammed M.
    Gharib, Tarek F.
    Mashat, Abdulfattah S.
    INTERNATIONAL CONFERENCE ON ADVANCED MACHINE LEARNING TECHNOLOGIES AND APPLICATIONS (AMLTA2018), 2018, 723 : 516 - 527
  • [9] Sentiment Analysis on Movie Reviews Using Ensemble Features and Pearson Correlation Based Feature Selection
    Rangkuti, Fachrul Rozy Saputra
    Fauzi, M. Ali
    Sari, Yuita Arum
    Sari, Eka Dewi Lukmana
    PROCEEDINGS OF 2018 3RD INTERNATIONAL CONFERENCE ON SUSTAINABLE INFORMATION ENGINEERING AND TECHNOLOGY (SIET 2018), 2018, : 88 - 91
  • [10] A Fused Feature Selection Technique for Enhanced Sentiment Analysis Using Deep Learning
    Muthukrishnan, Meenakshi
    Andavar, Suruliandi
    Raj, Raja Soosaimarian Peter
    BRAZILIAN ARCHIVES OF BIOLOGY AND TECHNOLOGY, 2024, 67