ESTIMATION OF EUCALYPTUS TREE HEIGHT IN CLONAL AND PROGENY TESTS USING ARTIFICIAL NEURAL NETWORKS

被引:1
|
作者
de Albuquerque Santos, Ana Carolina [1 ]
Almeida, Filipe Monteiro [2 ]
Souza, Ramon Barreto [2 ]
Chaves, Raul [3 ]
de Paiva, Haroldo Nogueira [4 ]
Breda Binot, Daniel Henrique [5 ]
Leite, Helio Garcia [4 ]
Farias, Aline Araujo [1 ]
机构
[1] Univ Fed Vicosa, Programa Posgrad Ciencias Florestal, Vicosa, MG, Brazil
[2] Univ Fed Vicosa, Grad Engn Florestal, Vicosa, MG, Brazil
[3] Duratex, Agudos, SP, Brazil
[4] Univ Fed Vicosa, Dept Engn Florestal, Vicosa, MG, Brazil
[5] Univ Fed Vicosa, Ciencia Florestal, Vicosa, MG, Brazil
来源
REVISTA ARVORE | 2017年 / 41卷 / 06期
关键词
Cost; Prediction; Experiment;
D O I
10.1590/1806-90882017000600002
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
The goal of this study was to test the applicability of artificial neural networks for estimating tree heights in clonal tests and progenies. We used data from 8,329 clonal tests collected for six age groups, divided into six blocks and five repetitions. For the progeny tests, we used 36,793 data points, collected at age 5 and divided into ten blocks and five repetitions. The categorical input variables considered were age, treatment, and block. The diameter (dap) was used with continuous input variables. For training the networks, we used two samples. Sub-sample 1 was composed of the first tree of each block. In sub-sample 2, the tree was selected randomly within each block. This selection was made in both tests. The selected data were separated, with 70% used for training and 30% used for validation. The other unselected trees were used for generalization. For each age and treatment, we used the Kolmogorov-Smirnov (KS) test to verify the normality of the errors. The results show that ANNs can be used to estimate the heights of trees subjected to various experimental plot treatments, with no loss of accuracy or estimation precision.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Eucalyptus Volume Estimation for Eucalyptus Clones Trees Using Artificial Neural Networks
    Rodrigues, Welington Galvao
    Cabacinha, Christian D.
    Salvini, Rogerio
    Vieira, Gabriel
    Fernandes, Deborah S. A.
    Soares, Fabrizzio
    [J]. 2020 IEEE CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (CCECE), 2020,
  • [2] Recursive diameter prediction for calculating merchantable volume of Eucalyptus clones without previous knowledge of total tree height using artificial neural networks
    Soares, Fabrizzio Alphonsus A. M. N.
    Flores, Edna Lucia
    Cabacinha, Christian Dias
    Carrijo, Gilberto Arantes
    Paschoarelli Veiga, Antonio Claudio
    [J]. APPLIED SOFT COMPUTING, 2012, 12 (08) : 2030 - 2039
  • [3] Estimation of Eucalyptus productivity using efficient artificial neural network
    Ricardo Rodrigues de Oliveira Neto
    Helio Garcia Leite
    José Marinaldo Gleriani
    Bogdan M. Strimbu
    [J]. European Journal of Forest Research, 2022, 141 : 129 - 151
  • [4] Estimation of Eucalyptus productivity using efficient artificial neural network
    de Oliveira Neto, Ricardo Rodrigues
    Leite, Helio Garcia
    Gleriani, Jose Marinaldo
    Strimbu, Bogdan M.
    [J]. EUROPEAN JOURNAL OF FOREST RESEARCH, 2022, 141 (01) : 129 - 151
  • [5] APPLICATION OF ARTIFICIAL NEURAL NETWORKS TO ESTIMATE THE HEIGHT OF EVEN-AGED STANDS OF EUCALYPTUS
    Marques da Silva Binoti, Mayra Luiza
    Breda Binoti, Daniel Henrique
    Leite, Helio Garcia
    [J]. REVISTA ARVORE, 2013, 37 (04): : 639 - 645
  • [6] Configuration of artificial neural networks for height-diameter relationship of Eucalyptus spp.
    Castro da Rocha, Jonas Elias
    Nogueira Junior, Marlon Roque
    Tavares Junior, Ivaldo da Silva
    Mazzini de Souza, Jianne Rafaela
    de Sousa Lopes, Lucas Sergio
    da Silva, Marcio Lopes
    [J]. SCIENTIA FORESTALIS, 2021, 49 (132):
  • [7] Classifying Breadfruit Tree using Artificial Neural Networks
    Malinao, Ronjie Mar L.
    Hernandez, Alexander A.
    [J]. 6TH INTERNATIONAL CONFERENCE ON APPLIED COMPUTING AND INFORMATION TECHNOLOGY (ACIT 2018), 2018, : 27 - 31
  • [8] Pressure derived wave height using artificial neural networks
    Tsai, Jen-Chih
    Tsai, Cheng-Han
    Tseng, Hsiang-Mao
    [J]. OCEANS 2008 - MTS/IEEE KOBE TECHNO-OCEAN, VOLS 1-3, 2008, : 850 - +
  • [9] ARTIFICIAL NEURAL NETWORKS (ANN) FOR HEIGHT ESTIMATION IN A MIXED-SPECIES PLANTATION OF Eucalyptus globulus LABILL AND Acacia mearnsii DE WILD
    Soares, Gustavo Martins
    Silva, Luciana Duque
    Higa, Antonio Rioyei
    Simon, Augusto Arlindo
    Jose, Jackson Freitas Brilhante de Sao
    [J]. REVISTA ARVORE, 2021, 45
  • [10] Modeling of eucalyptus productivity with artificial neural networks
    Sampaio de Freitas, Eliane Cristina
    de Paiva, Haroldo Nogueira
    Lima Neves, Julio Cesar
    Marcatti, Gustavo Eduardo
    Leite, Helio Garcia
    [J]. INDUSTRIAL CROPS AND PRODUCTS, 2020, 146