Dynamic crossover in the global persistence at criticality

被引:12
|
作者
Paul, R. [1 ]
Gambassi, A.
Schehr, G.
机构
[1] Heidelberg Univ, IWR, BIOMS, D-69120 Heidelberg, Germany
[2] Max Planck Inst Met Res, D-70569 Stuttgart, Germany
[3] Univ Stuttgart, Inst Theoret & Angew Phys, D-70569 Stuttgart, Germany
[4] Univ Paris 11, CNRS, UMR 8627, Phys Theor Lab, F-91405 Orsay, France
关键词
D O I
10.1209/0295-5075/78/10007
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the global persistence properties of critical systems relaxing from an initial state with non-vanishing value of the order parameter (e.g., the magnetization in the Ising model). The persistence probability of the global order parameter displays two consecutive regimes in which it decays algebraically in time with two distinct universal exponents. The associated crossover is controlled by the initial value m(0) of the order parameter and the typical time at which it occurs diverges as m(0) vanishes. Monte Carlo simulations of the two-dimensional Ising model with Glauber dynamics display clearly this crossover. The measured exponent of the ultimate algebraic decay is in rather good agreement with our theoretical predictions for the Ising universality class. Copyright (c) EPLA, 2007.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Dynamic crossover in the persistence probability of manifolds at criticality
    Gambassi, Andrea
    Paul, Raja
    Schehr, Gregory
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2010,
  • [2] Crossover criticality in ionic solutions
    Gutkowski, K
    Anisimov, MA
    Sengers, JV
    JOURNAL OF CHEMICAL PHYSICS, 2001, 114 (07): : 3133 - 3148
  • [3] Criticality and crossover in accessible regimes
    Orkoulas, G
    Panagiotopoulos, AZ
    Fisher, ME
    PHYSICAL REVIEW E, 2000, 61 (05): : 5930 - 5939
  • [4] Criticality and crossover in accessible regimes
    Orkoulas, G.
    Panagiotopoulos, A.Z.
    Fisher, Michael E.
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2000, 61 (05): : 5930 - 5939
  • [5] Crossover criticality in complex fluids
    Anisimov, MA
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2000, 12 (8A) : A451 - A457
  • [6] Global persistence exponent in critical dynamics: Finite-size-induced crossover
    Chakraborty, D.
    Bhattacharjee, J. K.
    PHYSICAL REVIEW E, 2007, 76 (03):
  • [7] Crossover behavior from decoupled criticality
    Kamiya, Y.
    Kawashima, N.
    Batista, C. D.
    PHYSICAL REVIEW B, 2010, 82 (05):
  • [8] Exploration of crossover criticality in an aqueous electrolyte solution
    Jacob, J
    Bagchi, D
    Kumar, A
    Oswal, SL
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 318 (1-2) : 101 - 112
  • [9] CRITICALITY AND CROSSOVER SCENARIOS IN UNIAXIAL DIPOLAR FERROMAGNETS
    RIED, K
    MILLEV, Y
    FAHNLE, M
    KRONMULLER, H
    PHYSICAL REVIEW B, 1994, 49 (06): : 4315 - 4318
  • [10] ON THE CROSSOVER TO UNIVERSAL CRITICALITY IN DILUTE ISING SYSTEMS
    JANSSEN, HK
    OERDING, K
    SENGESPEICK, E
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (21): : 6073 - 6085