Gaussian mixture models for classification of neonatal seizures using EEG

被引:46
|
作者
Thomas, E. M. [1 ]
Temko, A. [1 ]
Lightbody, G. [1 ]
Marnane, W. P. [1 ]
Boylan, G. B. [2 ]
机构
[1] Univ Coll Cork, Dept Elect & Elect Engn, Cork, Ireland
[2] Univ Coll Cork, Dept Paediat & Child Hlth, Cork, Ireland
基金
英国惠康基金; 爱尔兰科学基金会;
关键词
Neonatal EEG; seizure detection; Gaussian mixture models; EPILEPTIC SEIZURES; SYSTEM; FEATURES;
D O I
10.1088/0967-3334/31/7/013
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
A real-time neonatal seizure detection system is proposed based on a Gaussian mixture model classifier. The system includes feature transformation techniques and classifier output postprocessing. The detector was evaluated on a database of 20 patients with 330 h of recordings. A detailed analysis of the choice of parameters for the detector is provided. A mean good detection rate of 79% was obtained with only 0.5 false detections per hour. Athorough review of all misclassified events was performed, from which a number of patterns causing false detections were identified.
引用
收藏
页码:1047 / 1064
页数:18
相关论文
共 50 条
  • [1] Artifact detection in neonatal EEG using Gaussian mixture models
    Kauppila, M.
    Vanhatalo, S.
    Stevenson, N. J.
    [J]. EMBEC & NBC 2017, 2018, 65 : 221 - 224
  • [2] Classification and compression of ICEGS using gaussian mixture models
    Coggins, R
    Jabri, M
    [J]. NEURAL NETWORKS FOR SIGNAL PROCESSING VII, 1997, : 226 - 235
  • [3] Using Wavelets and Gaussian Mixture Models for Audio Classification
    Chuan, Ching-Hua
    Vasana, Susan
    Asaithambi, Asai
    [J]. 2012 IEEE INTERNATIONAL SYMPOSIUM ON MULTIMEDIA (ISM), 2012, : 421 - 426
  • [4] Classification of facial images using Gaussian mixture models
    Liao, P
    Gao, W
    Shen, L
    Chen, XL
    Shan, SG
    Zeng, WB
    [J]. ADVANCES IN MUTLIMEDIA INFORMATION PROCESSING - PCM 2001, PROCEEDINGS, 2001, 2195 : 724 - 731
  • [5] Emotional speech classification using Gaussian mixture models
    Ververidis, D
    Kotropoulos, C
    [J]. 2005 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), VOLS 1-6, CONFERENCE PROCEEDINGS, 2005, : 2871 - 2874
  • [6] Distribution based classification using Gaussian Mixture Models
    Gudnason, J
    Brookes, M
    [J]. 2002 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-IV, PROCEEDINGS, 2002, : 4159 - 4159
  • [7] Gaussian process modeling of EEG for the detection of neonatal seizures
    Faul, Stephen
    Gregorcic, Gregor
    Boylan, Geraldine
    Marnane, William
    Lightbody, Gordon
    Connolly, Sean
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2007, 54 (12) : 2151 - 2162
  • [8] Evolving Gaussian Mixture Models for Classification
    Reichhuber, Simon
    Tomforde, Sven
    [J]. ICAART: PROCEEDINGS OF THE 14TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE - VOL 3, 2022, : 964 - 974
  • [9] SPEAKER PHONE MODE CLASSIFICATION USING GAUSSIAN MIXTURE MODELS
    Eghbal-zadeh, H.
    Sobhan-manesh, F.
    Sameti, H.
    BabaAli, B.
    [J]. SPA 2011: SIGNAL PROCESSING ALGORITHMS, ARCHITECTURES, ARRANGEMENTS, AND APPLICATIONS CONFERENCE PROCEEDINGS, 2011, : 112 - +
  • [10] Towards autonomous habitat classification using Gaussian Mixture Models
    Steinberg, Daniel M.
    Williams, Stefan B.
    Pizarro, Oscar
    Jakuba, Michael V.
    [J]. IEEE/RSJ 2010 INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2010), 2010, : 4424 - 4431