Body-centered cubic iron-nickel alloy in Earth's core

被引:179
|
作者
Dubrovinsky, L.
Dubrovinskaia, N.
Narygina, O.
Kantor, I.
Kuznetzov, A.
Prakapenka, V. B.
Vitos, L.
Johansson, B.
Mikhaylushkin, A. S.
Simak, S. I.
Abrikosov, I. A.
机构
[1] Univ Bayreuth, Bayer Geoinst, D-95440 Bayreuth, Germany
[2] Heidelberg Univ, Inst Mineral, D-69120 Heidelberg, Germany
[3] Univ Chicago, Ctr Adv Radiat Sources, Chicago, IL 60637 USA
[4] Royal Inst Technol, Dept Mat Sci & Engn, SE-10044 Stockholm, Sweden
[5] Uppsala Univ, Dept Phys, Condensed Matter Theory Grp, SE-75121 Uppsala, Sweden
[6] Res Inst Solid State Phys & Opt, H-1525 Budapest, Hungary
[7] Linkoping Univ, Dept Phys Chem & Biol, Linkoping, Sweden
关键词
D O I
10.1126/science.1142105
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cosmochemical, geochemical, and geophysical studies provide evidence that Earth's core contains iron with substantial (5 to 15%) amounts of nickel. The iron-nickel alloy Fe0.9Ni0.1 has been studied in situ by means of angle-dispersive x-ray diffraction in internally heated diamond anvil cells (DACs), and its resistance has been measured as a function of pressure and temperature. At pressures above 225 gigapascals and temperatures over 3400 kelvin, Fe0.9Ni0.1 adopts a body-centered cubic structure. Our experimental and theoretical results not only support the interpretation of shockwave data on pure iron as showing a solid-solid phase transition above about 200 gigapascals but also suggest that iron alloys with geochemically reasonable compositions (that is, with substantial nickel, sulfur, or silicon content) adopt the bcc structure in Earth's inner core.
引用
收藏
页码:1880 / 1883
页数:4
相关论文
共 50 条
  • [1] Elastic properties of body-centered cubic iron in Earth's inner core
    Belonoshko, Anatoly B.
    Simak, Sergei I.
    Olovsson, Weine
    Vekilova, Olga Yu.
    [J]. PHYSICAL REVIEW B, 2022, 105 (18)
  • [2] Iron-nickel alloy in the Earth's core
    Lin, JF
    Heinz, DL
    Campbell, AJ
    Devine, JM
    Mao, WL
    Shen, GY
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2002, 29 (10) : 109 - 1
  • [3] Stability of body-centered cubic iron-magnesium alloys in the Earth's inner core
    Kadas, Krisztina
    Vitos, Levente
    Johansson, Borje
    Ahuja, Rajeev
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (37) : 15560 - 15562
  • [4] Ferromagnetic anisotropy in body-centered cubic iron nickel alloys
    McKeehan, LW
    [J]. PHYSICAL REVIEW, 1940, 57 (03): : 246 - 246
  • [5] The case for a body-centered cubic phase (α′) for iron at inner core conditions
    Matsui, M
    Anderson, OL
    [J]. PHYSICS OF THE EARTH AND PLANETARY INTERIORS, 1997, 103 (1-2) : 55 - 62
  • [6] Cooperative diffusion in body-centered cubic iron in Earth and super-Earths' inner core conditions
    Ghosh, Maitrayee
    Zhang, Shuai
    Hu, Lianming
    Hu, S. X.
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2023, 35 (15)
  • [7] ALLOY SOFTENING IN BODY-CENTERED CUBIC METALS
    PINK, E
    [J]. ZEITSCHRIFT FUR METALLKUNDE, 1973, 64 (12): : 871 - 881
  • [8] EDGE DISLOCATION CORE STRUCTURE AND PEIERLS BARRIER IN BODY-CENTERED CUBIC IRON
    CHANG, R
    GRAHAM, LJ
    [J]. PHYSICA STATUS SOLIDI, 1966, 18 (01): : 99 - &
  • [9] THERMODYNAMIC PROPERTIES OF CARBON IN BODY-CENTERED CUBIC IRON
    DUNN, WW
    MCLELLAN, RB
    [J]. METALLURGICAL TRANSACTIONS, 1971, 2 (04): : 1079 - &
  • [10] THE PHASE-STABILITY OF BODY-CENTERED CUBIC NICKEL, AND FACE-CENTERED CUBIC CHROMIUM
    HOCH, M
    [J]. CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY, 1993, 17 (02): : 157 - 160