Risk sensitive and robust nonlinear filtering

被引:0
|
作者
Fleming, WH [1 ]
McEneaney, WM [1 ]
机构
[1] Brown Univ, Div Appl Math, Providence, RI 02912 USA
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A risk sensitive approach to nonlinear filtering is considered. In this case, the traditional expected mean squared error is replaced by an expected exponential-of-mean squared error. A pathwise filtering equation is used to take the risk averse limit. This leads to a robust filtering estimator. The robust estimator yields a bound on the estimate error in terms of (finite) disturbance energy.
引用
收藏
页码:1088 / 1093
页数:6
相关论文
共 50 条
  • [1] Risk sensitive nonlinear filtering with correlated noises
    Florchinger, P
    [J]. APPLIED MATHEMATICS LETTERS, 2000, 13 (01) : 97 - 103
  • [2] Robust Limits of Risk Sensitive Nonlinear Filters
    Wendell H. Fleming
    William M. McEneaney
    [J]. Mathematics of Control, Signals and Systems, 2001, 14 : 109 - 142
  • [3] Robust limits of risk sensitive nonlinear filters
    Fleming, WH
    McEneaney, WM
    [J]. MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2001, 14 (02) : 109 - 142
  • [4] Risk-Sensitive Loss in Kernel Space for Robust Adaptive Filtering
    Chen, Badong
    Wang, Ren
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING (DSP), 2015, : 921 - 925
  • [5] Robust nonlinear H∞ filtering
    Univ of Auckland, Auckland, New Zealand
    [J]. Automatica, 8 (1195-1199):
  • [6] Robust adaptive filtering with variable risk-sensitive parameter and kernel width
    Liu, Yingzhi
    Dong, Fei
    Yu, Xin
    Qian, Guobing
    Wang, Shiyuan
    [J]. ELECTRONICS LETTERS, 2020, 56 (15) : 791 - 792
  • [7] Robust/H∞, filtering for nonlinear systems
    McEneaney, WM
    [J]. SYSTEMS & CONTROL LETTERS, 1998, 33 (05) : 315 - 325
  • [8] Robust diffusion approximation for nonlinear filtering
    [J]. J Math Syst Estim Control, 1 (139-142):
  • [9] Robust learning algorithms for nonlinear filtering
    Neumerkel, D
    Shorten, R
    Hambrecht, A
    [J]. 1996 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, CONFERENCE PROCEEDINGS, VOLS 1-6, 1996, : 3565 - 3568
  • [10] Kernel Risk-Sensitive Loss: Definition, Properties and Application to Robust Adaptive Filtering
    Chen, Badong
    Xing, Lei
    Xu, Bin
    Zhao, Haiquan
    Zheng, Nanning
    Principe, Jose C.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (11) : 2888 - 2901