Relationships between 31P chemical shift tensors and conformation of nucleic acid backbone:: A DFT study

被引:22
|
作者
Precechtelova, Jana [1 ]
Munzarova, Marketa L. [1 ]
Novak, Petr [1 ]
Sklenar, Vladimir [1 ]
机构
[1] Masaryk Univ, Fac Sci, Natl Ctr Biomol Res, CZ-61137 Brno, Czech Republic
来源
JOURNAL OF PHYSICAL CHEMISTRY B | 2007年 / 111卷 / 10期
关键词
D O I
10.1021/jp0668652
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Density functional theory (DFT) has been applied to study the conformational dependence of P-31 chemical shift tensors in B-DNA. The gg and gt conformations of backbone phosphate groups representing B-I- and B-II-DNA have been examined. Calculations have been carried out on static models of dimethyl phosphate (dmp) and dinucleoside-3',5'-monophosphate with bases replaced by hydrogen atoms in vacuo as well as in an explicit solvent. Trends in P-31 chemical shift anisotropy (CSA) tensors with respect to the backbone torsion angles alpha, zeta, beta, and epsilon are presented. Although these trends do not change qualitatively upon solvation, quantitative changes result in the reduction of the chemical shift anisotropy. For alpha and zeta in the range from 270 degrees to 330 degrees and from 240 degrees to 300 degrees, respectively, the delta(22) and delta(33) principal components vary within as much as 30 ppm, showing a marked dependence on backbone conformation. The calculated P-31 chemical shift tensor principal axes deviate from the axes of O-P-O bond angles by at most 5 degrees. For solvent models, our results are in a good agreement with experimental estimates of relative gg and gt isotropic chemical shifts. Solvation also brings the theoretical delta(iso) of the gg conformation closer to the experimental gg data of barium diethyl phosphate.
引用
收藏
页码:2658 / 2667
页数:10
相关论文
共 50 条
  • [1] 31P chemical shift tensors for canonical and non-canonical conformations of nucleic acids:: A DFT study and NMR implications
    Precechtelova, Jana
    Padrta, Petr
    Munzarova, Marketa L.
    Sklenar, Vladimir
    JOURNAL OF PHYSICAL CHEMISTRY B, 2008, 112 (11): : 3470 - 3478
  • [2] 31P chemical shift anisotropy as an aid in determining nucleic acid structure in liquid crystals
    Wu, Z.
    Tjandra, N.
    Bax, A.
    1600, American Chemical Society (123):
  • [3] 31P chemical shift anisotropy as an aid in determining nucleic acid structure in liquid crystals
    Wu, ZR
    Tjandra, N
    Bax, A
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (15) : 3617 - 3618
  • [4] 31P NMR Chemical Shift Tensors: Windows into Ruthenium Phosphinidene Complex Electronic Structures
    Transue, Wesley J.
    Dai, Yizhe
    Riu, Martin-Louis Y.
    Wu, Gang
    Cummins, Christopher C.
    INORGANIC CHEMISTRY, 2021, 60 (13) : 9254 - 9258
  • [5] Local-structure effects on 31P NMR chemical shift tensors in solid state
    Chernyshov, Ivan Yu.
    Vener, Mikhail V.
    Shenderovich, Ilya G.
    JOURNAL OF CHEMICAL PHYSICS, 2019, 150 (14):
  • [6] 31P CHEMICAL SHIFT OF PHOSPHORUS PENTAFLUORIDE
    MAIER, L
    SCHMUTZL.R
    JOURNAL OF THE CHEMICAL SOCIETY D-CHEMICAL COMMUNICATIONS, 1969, (17): : 961 - &
  • [7] Phosphorus Chemical Shift Tensors of Phosphole Derivatives Determined by 31P NMR Spectroscopy of Powder Samples
    Eichele, K.
    Wasylishen, R. E.
    Kessler, J. M.
    Solujic, L.
    Inorganic Chemistry, 35 (13):
  • [8] DFT calculations of 31P spin-spin coupling constants and chemical shift in dioxaphosphorinanes
    Pecul, Magdalena
    Urbanczyk, Mateusz
    Wodynski, Artur
    Jaszunski, Michal
    MAGNETIC RESONANCE IN CHEMISTRY, 2011, 49 (07) : 399 - 404
  • [9] Phosphorus chemical shift tensors for tetramethyldiphosphine disulfide:: A 31P single-crystal NMR, dipolar-chemical shift NMR, and ab initio molecular orbital study
    Gee, M
    Wasylishen, RE
    Eichele, K
    Britten, JF
    JOURNAL OF PHYSICAL CHEMISTRY A, 2000, 104 (19): : 4598 - 4605
  • [10] 15N chemical shift tensors in nucleic acid bases
    Hu, JZ
    Facelli, JC
    Alderman, DW
    Pugmire, RJ
    Grant, DM
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1998, 120 (38) : 9863 - 9869