NHAD: Neuro-Fuzzy Based Horizontal Anomaly Detection in Online Social Networks

被引:19
|
作者
Sharma, Vishal [1 ]
Kumar, Ravinder [2 ]
Cheng, Wen-Huang [3 ]
Atiquzzaman, Mohammed [4 ]
Srinivasan, Kathiravan [5 ]
Zomaya, Albert Y. [6 ]
机构
[1] Soonchunhyang Univ, Dept Informat Secur Engn, Asan 31538, South Korea
[2] Thapar Univ, Comp Sci & Engn Dept, Patiala 147004, Punjab, India
[3] Acad Sinica, Res Ctr Informat Technol Innovat CITI, Taipei 11529, Taiwan
[4] Univ Oklahoma, Sch Comp Sci, Norman, OK 73019 USA
[5] Natl Ilan Univ, Dept Comp Sci & Informat Engn, Yilan 26047, Yilan County, Taiwan
[6] Univ Sydney, Sch Informat Technol, Bldg J12, Sydney, NSW 2006, Australia
关键词
Horizontal anomaly; social networks; reputation; neuro-fuzzy model; OUTLIER DETECTION; MODEL;
D O I
10.1109/TKDE.2018.2818163
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Use of social network is the basic functionality of today's life. With the advent of more and more online social media, the information available and its utilization have come under the threat of several anomalies. Anomalies are the major cause of online frauds which allow information access by unauthorized users as well as information forging. One of the anomalies that act as a silent attacker is the horizontal anomaly. These are the anomalies caused by a user because of his/her variable behavior towards different sources. Horizontal anomalies are difficult to detect and hazardous for any network. In this paper, a self-healing neuro-fuzzy approach (NHAD) is used for the detection, recovery, and removal of horizontal anomalies efficiently and accurately. The proposed approach operates over the five paradigms, namely, missing links, reputation gain, significant difference, trust properties, and trust score. The proposed approach is evaluated with three datasets: DARPA'98 benchmark dataset, synthetic dataset, and real-time traffic. Results show that the accuracy of the proposed NHAD model for 10 to 30 percent anomalies in synthetic dataset ranges between 98.08 and 99.88 percent. The evaluation over DARPA'98 dataset demonstrates that the proposed approach is better than the existing solutions as it provides 99.97 percent detection rate for anomalous class. For real-time traffic, the proposed NHAD model operates with an average accuracy of 99.42 at 99.90 percent detection rate.
引用
收藏
页码:2171 / 2184
页数:14
相关论文
共 50 条
  • [1] A Neuro-Fuzzy Approach to Detect Rumors in Online Social Networks
    Srinivasan, Santhoshkumar
    Babu, Dhinesh L. D.
    INTERNATIONAL JOURNAL OF WEB SERVICES RESEARCH, 2020, 17 (01) : 64 - 82
  • [2] Prediction and Detection of User Emotions Based on Neuro-Fuzzy Neural Networks in Social Networks
    Pilato, Giovanni
    Yarushev, Sergey A.
    Averkin, Alexey N.
    PROCEEDINGS OF THE THIRD INTERNATIONAL SCIENTIFIC CONFERENCE INTELLIGENT INFORMATION TECHNOLOGIES FOR INDUSTRY (IITI'18), VOL 2, 2019, 875 : 118 - 125
  • [3] Feature selection based on neuro-fuzzy networks
    Sang, N
    Xie, YT
    Zhang, TX
    SIGNAL PROCESSING, SENSOR FUSION, AND TARGET RECOGNITION XIV, 2005, 5809 : 530 - 537
  • [4] Novel Anomaly Intrusion Detection Using Neuro-Fuzzy Inference System
    Kumar, K. S. Anil
    NandaMohan, V.
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2008, 8 (08): : 6 - 11
  • [5] Anomaly detection in online social networks
    Savage, David
    Zhang, Xiuzhen
    Yu, Xinghuo
    Chou, Pauline
    Wang, Qingmai
    SOCIAL NETWORKS, 2014, 39 : 62 - 70
  • [6] Intrusion Detection Based on Neuro-Fuzzy Classification
    Gaied, Imen
    Jemili, Farah
    Korbaa, Ouajdi
    2015 IEEE/ACS 12TH INTERNATIONAL CONFERENCE OF COMPUTER SYSTEMS AND APPLICATIONS (AICCSA), 2015,
  • [7] Neuro-fuzzy networks in CAPP
    Maiyo, Bernard S.
    Xiankui, Wang
    Chengying, Liu
    Chinese Journal of Mechanical Engineering (English Edition), 2000, 13 (01): : 30 - 34
  • [8] NEURO-FUZZY NETWORKS IN CAPP
    Bernard S Maiyo
    Wang Xiankui
    Lin Chengying (Department of Precision Instruments and Mechanology
    Chinese Journal of Mechanical Engineering, 2000, (01) : 30 - 34
  • [9] A construction of neuro-fuzzy networks based on whitening transformation
    Hou, CL
    Lee, SJ
    PROCEEDINGS OF THE FIFTH JOINT CONFERENCE ON INFORMATION SCIENCES, VOLS 1 AND 2, 2000, : 594 - 597
  • [10] Neuro-fuzzy networks and their application to fault detection of dynamical systems
    Korbicz, Jozef
    Kowal, Marek
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2007, 20 (05) : 609 - 617