CYLINDRICAL ESTIMATES FOR HYPERSURFACES MOVING BY CONVEX CURVATURE FUNCTIONS

被引:5
|
作者
Andrews, Ben [1 ,2 ]
Langford, Mat [1 ,3 ]
机构
[1] Australian Natl Univ, Inst Math Sci, Canberra, ACT 0200, Australia
[2] Tsinghua Univ, Ctr Math Sci, Beijing 100084, Peoples R China
[3] Univ Konstanz, Fachbereich Math & Stat, D-78457 Constance, Germany
来源
ANALYSIS & PDE | 2014年 / 7卷 / 05期
基金
澳大利亚研究理事会;
关键词
curvature flows; cylindrical estimates; fully nonlinear; convexity estimates; MEAN-CURVATURE; FLOW; SURFACES; SINGULARITIES;
D O I
10.2140/apde.2014.7.1091
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a complete family of cylindrical estimates for solutions of a class of fully nonlinear curvature flows, generalising the cylindrical estimate of Huisken and Sinestrari [Invent. Math. 175:1 (2009), 1-14, 5] for the mean curvature flow. More precisely, we show, for the class of flows considered, that, at points where the curvature is becoming large, an (m+1)-convex (0 <= m <= n -2) solution either becomes strictly m-convex or its Weingarten map becomes that of a cylinder R-m x Sn-m. This result complements the convexity estimate we proved with McCoy [Anal. PDE 7:2 (2014), 407-433] for the same class of flows.
引用
收藏
页码:1091 / 1107
页数:17
相关论文
共 50 条