Radiopaque Chitosan Ducts Fabricated by Extrusion-Based 3D Printing to Promote Healing After Pancreaticoenterostomy

被引:6
|
作者
Pan, Maoen [1 ]
Zhao, Chaoqian [2 ]
Xu, Zeya [2 ]
Yang, Yuanyuan [1 ]
Teng, Tianhong [1 ]
Lin, Jinxin [2 ]
Huang, Heguang [1 ]
机构
[1] Fujian Med Univ Union Hosp, Dept Gen Surg, Fuzhou, Peoples R China
[2] Chinese Acad Sci, Fujian Inst Res Struct Matter, Key Lab Optoelect Mat Chem & Phys, Fuzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
3D printing; chitosan; pancreatic duct stent; biocompatible; degradation; BIODEGRADABLE STENT; PANCREATICODUODENECTOMY; COMPLICATIONS; DEGRADATION; SCAFFOLDS;
D O I
10.3389/fbioe.2021.686207
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Long-term placement of non-degradable silicone rubber pancreatic duct stents in the body is likely to cause inflammation and injury. Therefore, it is necessary to develop degradable and biocompatible stents to replace silicone rubber tubes as pancreatic duct stents. The purpose of our research was to verify the feasibility and biological safety of extrusion-based 3D printed radiopaque chitosan (CS) ducts for pancreaticojejunostomy. Chitosan-barium sulfate (CS-Ba) ducts with different molecular weights (low-, medium-, and high-molecular weight CS-Ba: LCS-Ba, MCS-Ba, and HCS-Ba, respectively) were soaked in vitro in simulated pancreatic juice (SPJ) (pH 8.0) with or without pancreatin for 16 weeks. Changes in their weight, water absorption rate and mechanical properties were tested regularly. The biocompatibility, degradation and radiopaque performance were verified by in vivo and in vitro experiments. The results showed that CS-Ba ducts prepared by this method had regular compact structures and good molding effects. In addition, the lower the molecular weight of the CS-Ba ducts was, the faster the degradation rate was. Extrusion-based 3D-printed CS-Ba ducts have mechanical properties that match those of soft tissue, good biocompatibility and radioopacity. In vitro studies have also shown that CS-Ba ducts can promote the growth of fibroblasts. These stents have great potential for use in pancreatic duct stent applications in the future.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Chitosan ducts fabricated by extrusion-based 3D printing for soft-tissue engineering
    Zhao, C. Q.
    Liu, W. G.
    Xu, Z. Y.
    Li, J. G.
    Huang, T. T.
    Lu, Y. J.
    Huang, H. G.
    Lin, J. X.
    CARBOHYDRATE POLYMERS, 2020, 236
  • [2] Extrusion-Based 3D Printing of Photocrosslinkable Chitosan Inks
    Garcia-Garcia, Ane
    Perez-Alvarez, Leyre
    Ruiz-Rubio, Leire
    Larrea-Sebal, Asier
    Martin, Cesar
    Vilas-Vilela, Jose Luis
    GELS, 2024, 10 (02)
  • [3] The microstructure and mechanical properties of nickel fabricated by material extrusion-based 3D printing
    Song, Daosen
    Ye, Guiyou
    Shi, Kai
    Han, Zhifeng
    Zhou, Wei
    Fu, Zhiguo
    Guo, Chenxu
    Gao, Gongru
    Zhang, Guangming
    AIP ADVANCES, 2024, 14 (06)
  • [4] Extrusion-based 3D printing of ceramic components
    Faes, M.
    Valkenaers, H.
    Vogeler, F.
    Vleugels, J.
    Ferraris, E.
    3RD CIRP GLOBAL WEB CONFERENCE - PRODUCTION ENGINEERING RESEARCH ADVANCEMENT BEYOND STATE OF THE ART (CIRPE2014), 2015, 28 : 76 - 81
  • [5] Mechanical properties of engineered cementitious composites beams fabricated by extrusion-based 3D printing
    Zhu, Binrong
    Pan, Jinlong
    Zhou, Zhenxin
    Cai, Jingming
    ENGINEERING STRUCTURES, 2021, 238
  • [6] Extrusion-based 3D printing of soft active materials
    Zhao, Jiayu
    Li, Xiao
    Ji, Donghwan
    Bae, Jinhye
    CHEMICAL COMMUNICATIONS, 2024, 60 (58) : 7414 - 7426
  • [7] EXTRUSION-BASED 3D PRINTING OF PORCELAIN: FEASIBLE REGIONS
    Bhardwaj, Abhinav
    Kalantar, Negar
    Molina, Elmer
    Zou, Na
    Pei, Zhijian
    PROCEEDINGS OF THE ASME 14TH INTERNATIONAL MANUFACTURING SCIENCE AND ENGINEERING CONFERENCE, 2019, VOL 1, 2019,
  • [8] Extrusion-based 3D food printing - Materials and machines
    Tan, Cavin
    Toh, Wei Yan
    Wong, Gladys
    Li, Lin
    INTERNATIONAL JOURNAL OF BIOPRINTING, 2018, 4 (02)
  • [9] Hyaluronic acid as a bioink for extrusion-based 3D printing
    Petta, D.
    D'Amora, U.
    Ambrosio, L.
    Grijpma, D. W.
    Eglin, D.
    D'Este, M.
    BIOFABRICATION, 2020, 12 (03)
  • [10] Extrusion-based 3D printing of gelatin methacryloyl with nanocrystalline hydroxyapatite
    Das, Soumitra
    Basu, Bikramjit
    INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY, 2022, 19 (02) : 924 - 938