SPEAKER CONDITIONING OF ACOUSTIC MODELS USING AFFINE TRANSFORMATION FOR MULTI-SPEAKER SPEECH RECOGNITION

被引:2
|
作者
Yousefi, Midia [1 ]
Hansen, John H. L. [1 ]
机构
[1] Univ Texas Dallas, Ctr Robust Speech Syst CRSS, Erik Jonsson Sch Engn, Richardson, TX 75083 USA
关键词
Affine transformation; overlap speech recognition; feature-wise linear modulation; multi-speaker recognition; acoustic modeling; END;
D O I
10.1109/ASRU51503.2021.9688231
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This study addresses the problem of single-channel Automatic Speech Recognition of a target speaker within an overlap speech scenario. In the proposed method, the hidden representations in the acoustic model are modulated by speaker auxiliary information to recognize only the desired speaker. Affine transformation layers are inserted into the acoustic model network to integrate speaker information with the acoustic features. The speaker conditioning process allows the acoustic model to perform computation in the context of target-speaker auxiliary information. The proposed speaker conditioning method is a general approach and can be applied to any acoustic model architecture. Here, we employ speaker conditioning on a ResNet acoustic model. Experiments on the WSJ corpus show that the proposed speaker conditioning method is an effective solution to fuse speaker auxiliary information with acoustic features for multi-speaker speech recognition, achieving +9% and +20% relative WER reduction for clean and overlap speech scenarios, respectively, compared to the original ResNet acoustic model baseline.
引用
收藏
页码:283 / 288
页数:6
相关论文
共 50 条
  • [1] End-to-End Multi-Speaker Speech Recognition using Speaker Embeddings and Transfer Learning
    Denisov, Pavel
    Ngoc Thang Vu
    [J]. INTERSPEECH 2019, 2019, : 4425 - 4429
  • [2] END-TO-END MULTI-SPEAKER SPEECH RECOGNITION
    Settle, Shane
    Le Roux, Jonathan
    Hori, Takaaki
    Watanabe, Shinji
    Hershey, John R.
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 4819 - 4823
  • [3] Speech Recognition and Multi-Speaker Diarization of Long Conversations
    Mao, Huanru Henry
    Li, Shuyang
    McAuley, Julian
    Cottrell, Garrison W.
    [J]. INTERSPEECH 2020, 2020, : 691 - 695
  • [4] SYNTHESIZING DYSARTHRIC SPEECH USING MULTI-SPEAKER TTS FOR DYSARTHRIC SPEECH RECOGNITION
    Soleymanpour, Mohammad
    Johnson, Michael T.
    Soleymanpour, Rahim
    Berry, Jeffrey
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 7382 - 7386
  • [5] SPEAKER RECOGNITION FOR MULTI-SPEAKER CONVERSATIONS USING X-VECTORS
    Snyder, David
    Garcia-Romero, Daniel
    Sell, Gregory
    McCree, Alan
    Povey, Daniel
    Khudanpur, Sanjeev
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 5796 - 5800
  • [6] Speaker Clustering with Penalty Distance for Speaker Verification with Multi-Speaker Speech
    Das, Rohan Kumar
    Yang, Jichen
    Li, Haizhou
    [J]. 2019 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2019, : 1630 - 1635
  • [7] A hybrid approach to speaker recognition in multi-speaker environment
    Trivedi, J
    Maitra, A
    Mitra, SK
    [J]. PATTERN RECOGNITION AND MACHINE INTELLIGENCE, PROCEEDINGS, 2005, 3776 : 272 - 275
  • [8] End-to-End Multilingual Multi-Speaker Speech Recognition
    Seki, Hiroshi
    Hori, Takaaki
    Watanabe, Shinji
    Le Roux, Jonathan
    Hershey, John R.
    [J]. INTERSPEECH 2019, 2019, : 3755 - 3759
  • [9] END-TO-END MULTI-SPEAKER SPEECH RECOGNITION WITH TRANSFORMER
    Chang, Xuankai
    Zhang, Wangyou
    Qian, Yanmin
    Le Roux, Jonathan
    Watanabe, Shinji
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 6134 - 6138
  • [10] Speaker conditioned acoustic modeling for multi-speaker conversational ASR
    Chetupalli, Srikanth Raj
    Ganapathy, Sriram
    [J]. INTERSPEECH 2022, 2022, : 3834 - 3838