Mixing properties of non-stationary INGARCH(1,1) processes

被引:3
|
作者
Doukhan, Paul [1 ]
Leucht, Anne [2 ]
Neumann, Michael H. [3 ]
机构
[1] CY Univ, UMR Anal Geometr & Modelisat 8088, 2 Ave Adolphe Chauvin, F-95302 Cergy Pontoise, France
[2] Univ Bamberg, Res Grp Stat & Math, Feldkirchenstr 21, D-96052 Bamberg, Germany
[3] Friedrich Schiller Univ Jena, Inst Math, Ernst Abbe Pl 2, D-07743 Jena, Germany
关键词
Absolute regularity; coupling; INGARCH; mixing; ABSOLUTE REGULARITY; POISSON;
D O I
10.3150/21-BEJ1362
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We derive mixing properties for a broad class of Poisson count time series satisfying a certain contraction condition. Using specific coupling techniques, we prove absolute regularity at a geometric rate not only for stationary Poisson-GARCH processes but also for models with an explosive trend. We provide easily verifiable sufficient conditions for absolute regularity for a variety of models including classical (log-)linear models. Finally, we illustrate the practical use of our results for hypothesis testing.
引用
收藏
页码:663 / 688
页数:26
相关论文
共 50 条
  • [1] Generalization bounds for non-stationary mixing processes
    Vitaly Kuznetsov
    Mehryar Mohri
    [J]. Machine Learning, 2017, 106 : 93 - 117
  • [2] Generalization bounds for non-stationary mixing processes
    Kuznetsov, Vitaly
    Mohri, Mehryar
    [J]. MACHINE LEARNING, 2017, 106 (01) : 93 - 117
  • [3] Mixing properties of non-stationary multi-variate count processes
    Debaly, Zinsou Max
    Neumann, Michael H.
    Truquet, Lionel
    [J]. JOURNAL OF TIME SERIES ANALYSIS, 2024,
  • [4] Report of working group 1: Non-stationary processes
    Judge, PG
    [J]. CORONA AND SOLAR WIND NEAR MINIMUM ACTIVITY - FIFTH SOHO WORKSHOP, 1997, 404 : 125 - 129
  • [5] Restricted normal mixture QMLE for non-stationary TGARCH(1,1) models
    WANG Hui
    PAN JiaZhu
    [J]. Science China Mathematics, 2014, 57 (07) : 1341 - 1360
  • [6] Stable limits for the Gaussian QMLE in the non-stationary GARCH(1,1) model
    Arvanitis, Stelios
    Louka, Alexandros
    [J]. ECONOMICS LETTERS, 2017, 161 : 135 - 137
  • [7] Restricted normal mixture QMLE for non-stationary TGARCH(1,1) models
    Wang Hui
    Pan JiaZhu
    [J]. SCIENCE CHINA-MATHEMATICS, 2014, 57 (07) : 1341 - 1360
  • [8] The Limiting Distribution of a Non-Stationary Integer Valued GARCH(1,1) Process
    Michel, Jon
    [J]. JOURNAL OF TIME SERIES ANALYSIS, 2020, 41 (02) : 351 - 356
  • [9] Observer Design for non-stationary oscillating Disturbances in Mixing Processes
    Skalecki, Patric
    Laicher, Sonja
    Woerner, Mark
    Sawodny, Oliver
    [J]. IFAC PAPERSONLINE, 2020, 53 (02): : 8891 - 8896
  • [10] BERNSTEIN INEQUALITY FOR STRONG MIXING, NON-STATIONARY PROCESSES - APPLICATIONS
    CARBON, M
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1983, 297 (05): : 303 - 306