One more on the convergence rates in precise asymptotics. LV Rozovsky

被引:1
|
作者
Rozovsky, L., V [1 ]
机构
[1] St Petersburg State Chem & Pharmaceut Univ, 14 Prof Popov St, St Petersburg 197376, Russia
基金
俄罗斯基础研究基金会;
关键词
Convergence rates; Precise asymptotics; Complete convergence; LAW;
D O I
10.1016/j.spl.2020.109023
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let eta(n), n >= 1, be a sequence of random variables. We study conditions under which lim(epsilon SE arrow 0) (Sigma(n >= 1) phi(n) P(eta(n) >= f (epsilon g(n))) - nu(epsilon)) = C, where C is a constant, assuming among other conditions that non-negative functions phi(x) and f (x), g(x), tend, respectively, to 0 and to infinity as x -> infinity. Results obtained, in particular, are wide generalization of the similar results obtained recently in Gut and Steinebach (2013), Kong (2016), Kong and Dai (2016) and Zhang (2019). (C) 2020 Published by Elsevier B.V.
引用
收藏
页数:6
相关论文
共 50 条