Automatic Detection of Premature Ventricular Contraction Beat Using Morphological Transformation and Cross-correlation

被引:0
|
作者
Nahar, Shamsun [1 ]
bin Munir, Md. ShahNoor [2 ]
机构
[1] United Int Univ, Dept Elect & Elect Engn, Dhaka, Bangladesh
[2] Bangladesh Univ Engn & Technol, Dept Elect & Elect Engn, Dhaka, Bangladesh
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a premature ventricular contraction beat (PVC) detection algorithm based on morphological transformation and cross-correlation technique. A modified morphological filtering (MMF) technique is used for signal preprocessing and Multiscale Morphological Derivative (MMD) is performed on the MMF conditioned signal to detect each ECG beat present in the signal. A template beat is chosen and compared with the rest ECG beats using cross-correlation technique. PVC beats are then detected using a decision parameter which is a linear function of two equally weighted indices. One of the indices is linearly dependent on inter-beat duration and the other is an exponential function of the cross-correlation coefficient between template beat and the ECG beat Potential of this proposed method was examined using MIT-BIH arrhythmia database. Results show high sensitivity (96.67%) and specitivity (95.2%) on premature beat recognition.
引用
收藏
页码:18 / +
页数:2
相关论文
共 50 条
  • [1] Premature ventricular contraction beat detection with deep neural networks
    Jun, Tae Joon
    Park, Hyun Ji
    Nguyen Hoang Minh
    Kim, Daeyoung
    Kim, Young-Hak
    [J]. 2016 15TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2016), 2016, : 859 - 864
  • [2] Automatic detection of premature ventricular contraction using quantum neural networks
    Zhou, J
    [J]. THIRD IEEE SYMPOSIUM ON BIOINFORMATICS AND BIOENGINEERING - BIBE 2003, PROCEEDINGS, 2003, : 169 - 173
  • [3] Automatic Premature Ventricular Contraction Detection in Photoplethysmographic Signals
    Solosenko, Andrius
    Marozas, Vaidotas
    [J]. 2014 IEEE BIOMEDICAL CIRCUITS AND SYSTEMS CONFERENCE (BIOCAS), 2014, : 49 - 52
  • [4] Power Efficient Cross-Correlation Beat Detection in Electrocardiogram Analysis Using Bitstreams
    Liseth, Olav E.
    Hjortland, Hakon A.
    Lande, Tor Sverre
    [J]. 2009 IEEE BIOMEDICAL CIRCUITS AND SYSTEMS CONFERENCE (BIOCAS 2009), 2009, : 272 - 275
  • [5] Automatic Premature Ventricular Contraction Detection Using Deep Metric Learning and KNN
    Yu, Junsheng
    Wang, Xiangqing
    Chen, Xiaodong
    Guo, Jinglin
    [J]. BIOSENSORS-BASEL, 2021, 11 (03):
  • [6] Automatic Identification of Premature Ventricular Contraction Using ECGs
    Chen, Hao
    Bai, Jiaqi
    Mao, Luning
    Wei, Jieying
    Song, Jiangling
    Zhang, Rui
    [J]. HEALTH INFORMATION SCIENCE, HIS 2019, 2019, 11837 : 143 - 155
  • [7] Power-Efficient Cross-Correlation Beat Detection in Electrocardiogram Analysis Using Bitstreams
    Liseth, Olav E.
    Mo, Daniel
    Hjortland, Hakon A.
    Lande, Tor Sverre Bassen
    Wisland, Dag T.
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, 2010, 4 (06) : 419 - 425
  • [8] CROSS-CORRELATION MASKS FOR AUTOMATIC DETECTION OF SPECTRAL INFORMATION
    NG, RCL
    HORLICK, G
    [J]. SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 1981, 36 (06) : 543 - 551
  • [9] Premature Ventricular Beat Detection by Using Spectral Clustering Methods
    Ribeiro, B. R.
    Marques, A. M.
    Henriques, J. H.
    Antunes, M. A.
    [J]. COMPUTERS IN CARDIOLOGY 2007, VOL 34, 2007, 34 : 149 - +
  • [10] Premature Ventricular Contraction Beat Classification via Hyperdimensional Computing
    Ung, Brandon W.
    Ge, Lulu
    Parhi, Keshab K.
    [J]. 2022 56TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS, 2022, : 1306 - 1310