Experimental Study on the Kinetics of Adsorption of CO2 and CH4 in Gas-Bearing Shale Reservoirs

被引:39
|
作者
Du, Xidong [1 ,2 ]
Gu, Min [1 ]
Hou, Zhenkun [3 ]
Liu, Zhenjian [4 ]
Wu, Tengfei [5 ,6 ]
机构
[1] Chongqing Univ, Sch Resources & Safety Engn, State Key Lab Coal Mine Disaster Dynam & Control, Chongqing 400044, Peoples R China
[2] East China Univ Technol, Sch Earth Sci, Nanchang 330013, Jiangxi, Peoples R China
[3] Guangzhou Inst Bldg Sci Co Ltd, Guangzhou 510440, Guangdong, Peoples R China
[4] Yancheng Inst Technol, Coll Civil Engn, Yancheng 224051, Jiangsu, Peoples R China
[5] Shenyang Res Inst, China Coal Technol & Engn Grp, Fushun 113122, Peoples R China
[6] State Key Lab Coal Mine Safety Technol, Fushun 113122, Peoples R China
关键词
COALBED METHANE RECOVERY; DIFFUSION-COEFFICIENT; PURE N-2; TRANSPORT; STORAGE; INSIGHTS; MIXTURE; FLOW;
D O I
10.1021/acs.energyfuels.9b03176
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Knowledge of the kinetics of adsorption of CO2 and CH4 on shales is essential for the optimization of the technique of enhanced gas recovery by CO2 injection. In this paper, the experiments of adsorption kinetics of CO2 and CH4 on marine Wufeng (WF) shale and continental Yanchang (YC) shale at 318, 338, and 358 K over the pressure range of 3.0-8.0 MPa were conducted by a volumetric method. Results show that the adsorption processes of CH4 and CO2 on the shales can be described as an initial rapid adsorption stage and a slow sorption stage. The unipore model can simulate the kinetics data of CO2 and CH4 well. The diffusion coefficient (D) of gas increases with the increase of pressure. High temperatures will help to improve the diffusivities of CO2 and CH4. The order of magnitude of D of CO2 and CH4 on the two samples is 10(-11) m(2)/s. The diffusion activation energies (E-a) of CO2 and CH4 on YC shale are 3.37 and 10.15 kJ/mol, respectively, and E-a of CO2 and CH4 on WF shale are 1.33 and 3.56 kJ/mol, respectively. The E-a value of CH4 greater than that of CO2 indicates that CH4 diffusion in shale formation is more difficult and needs to jump a higher potential barrier. There is a positive correlation of pressure with the adsorption rates of CO2 and CH4. As the temperature enhances, the gas adsorption rate reduces. The ratios of D of CO2, CH4, and N-2 are 1.42:1.15:1.00 on YC shale and 1.72:1.38:1.00 on WF shale. The adsorption rates of CO2, CH4, and N-2 on the shales exhibit a decreasing trend.
引用
收藏
页码:12587 / 12600
页数:14
相关论文
共 50 条
  • [1] Adsorption kinetics of CH4 and CO2 on shale: Implication for CO2 sequestration
    Liao, Qi
    Zhou, Junping
    Zheng, Yi
    Xian, Xuefu
    Deng, Guangrong
    Zhang, Chengpeng
    Duan, Xianggang
    Wu, Zhenkai
    Li, Sensheng
    SEPARATION AND PURIFICATION TECHNOLOGY, 2024, 337
  • [2] Study on the adsorption of CH4, CO2 and various CH4/CO2 mixture gases on shale
    Du, Xidong
    Cheng, Yugang
    Liu, Zhenjian
    Hou, Zhenkun
    Wu, Tengfei
    Lei, Ruide
    Shu, Couxian
    ALEXANDRIA ENGINEERING JOURNAL, 2020, 59 (06) : 5165 - 5178
  • [3] Experimental study on the CH4/CO2 competitive adsorption behaviors of typical shale minerals in low pressure reservoirs
    Tian, Sen
    Jia, Huimin
    Ge, Zhaolong
    Wang, Guangjin
    Bai, Ruyi
    FUEL, 2025, 390
  • [4] Investigation of adsorption kinetics of CH4 and CO2 on shale exposure to supercritical CO2
    Qin, Chao
    Jiang, Yongdong
    Zuo, Shuangying
    Chen, Shiwan
    Xiao, Siyou
    Liu, Zhengjie
    ENERGY, 2021, 236
  • [5] A review of gas adsorption on shale and the influencing factors of CH4 and CO2 adsorption
    Mudoi, Manash Protim
    Sharma, Pushpa
    Khichi, Abhimanyu Singh
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2022, 217
  • [6] Molecular Simulation and Experimental Study on Adsorption Effect of CH4/CO2 in Shale Minerals
    Tian, Sen
    Bai, Ruyi
    Zhao, Ying
    Lu, Yiyu
    Chen, Jie
    Wu, Shuliang
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2023, 63 (01) : 818 - 832
  • [7] Review of Competitive Adsorption of CO2/CH4 in Shale: Implications for CO2 Sequestration and Enhancing Shale Gas Recovery
    Cao, Mengyao
    Qin, Chao
    Jiang, Yongdong
    Xia, Peng
    Wang, Ke
    ACS OMEGA, 2025,
  • [8] Competition adsorption of CO2/CH4 in shale: Implications for CO2 sequestration with enhanced gas recovery
    Liao, Qi
    Zhou, Junping
    Xian, Xuefu
    Yang, Kang
    Zhang, Chengpeng
    Dong, Zhiqiang
    Yin, Hong
    FUEL, 2023, 339
  • [9] Thermodynamics and Kinetics of CO2/CH4 Adsorption on Shale from China: Measurements and Modeling
    Chi, Yuan
    Zhao, Changzhong
    Lv, Junchen
    Zhao, Jiafei
    Zhang, Yi
    ENERGIES, 2019, 12 (06):
  • [10] Controlling parameters of CH4 and CO2 adsorption on shale—a review
    Manash Protim Mudoi
    Basanta K. Prusty
    Arabian Journal of Geosciences, 2022, 15 (6)