Smoothing Quantile Regressions

被引:41
|
作者
Fernandes, Marcelo [1 ]
Guerre, Emmanuel [2 ]
Horta, Eduardo [3 ]
机构
[1] FGV, Sao Paulo Sch Econ, Rua Itapeva 474-1003, BR-01332000 Sao Paulo, SP, Brazil
[2] Univ Kent, Sch Econ, Kennedy Bldg, Canterbury CT2 7NP, Kent, England
[3] Univ Fed Rio Grande do Sul, Dept Stat, Av Bento Gonalves 9500, BR-91501970 Porto Alegre, RS, Brazil
关键词
Asymptotic expansion; Bahadur?Kiefer representation; Conditional quantile; Convolution-based smoothing; Data-driven bandwidth; BAHADUR REPRESENTATION; MEDIAN REGRESSION; INFERENCE; MODELS; ESTIMATORS;
D O I
10.1080/07350015.2019.1660177
中图分类号
F [经济];
学科分类号
02 ;
摘要
We propose to smooth the objective function, rather than only the indicator on the check function, in a linear quantile regression context. Not only does the resulting smoothed quantile regression estimator yield a lower mean squared error and a more accurate Bahadur?Kiefer representation than the standard estimator, but it is also asymptotically differentiable. We exploit the latter to propose a quantile density estimator that does not suffer from the curse of dimensionality. This means estimating the conditional density function without worrying about the dimension of the covariate vector. It also allows for two-stage efficient quantile regression estimation. Our asymptotic theory holds uniformly with respect to the bandwidth and quantile level. Finally, we propose a rule of thumb for choosing the smoothing bandwidth that should approximate well the optimal bandwidth. Simulations confirm that our smoothed quantile regression estimator indeed performs very well in finite samples. for this article are available online.
引用
收藏
页码:338 / 357
页数:20
相关论文
共 50 条
  • [1] Unconditional Quantile Regressions
    Firpo, Sergio
    Fortin, Nicole M.
    Lemieux, Thomas
    [J]. ECONOMETRICA, 2009, 77 (03) : 953 - 973
  • [2] Mixtures of quantile regressions
    Wu, Qiang
    Yao, Weixin
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 93 : 162 - 176
  • [3] An algorithm for censored quantile regressions
    Stengos, Thanasis
    Wang, Dianqin
    [J]. ECONOMICS BULLETIN, 2007, 3
  • [4] ARCH tests and quantile regressions
    Furno, M
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2004, 74 (04) : 277 - 292
  • [5] QUANTILE SMOOTHING SPLINES
    KOENKER, R
    NG, P
    PORTNOY, S
    [J]. BIOMETRIKA, 1994, 81 (04) : 673 - 680
  • [6] Adaptive quantile regressions for massive datasets
    Jiang, Rong
    Chen, Wei-wei
    Liu, Xin
    [J]. STATISTICAL PAPERS, 2021, 62 (04) : 1981 - 1995
  • [7] Jackknife model averaging for quantile regressions
    Lu, Xun
    Su, Liangjun
    [J]. JOURNAL OF ECONOMETRICS, 2015, 188 (01) : 40 - 58
  • [8] Tests for structural break in quantile regressions
    Marilena Furno
    [J]. AStA Advances in Statistical Analysis, 2012, 96 : 493 - 515
  • [9] Tests for structural break in quantile regressions
    Furno, Marilena
    [J]. ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2012, 96 (04) : 493 - 515
  • [10] ITERATIVELY REWEIGHTED CONSTRAINED QUANTILE REGRESSIONS
    Amerise, Ilaria L.
    [J]. ADVANCES AND APPLICATIONS IN STATISTICS, 2016, 49 (06) : 417 - 441