ESTIMATING THE CONDITION NUMBER OF THE FRECHET DERIVATIVE OF A MATRIX FUNCTION

被引:3
|
作者
Higham, Nicholas J. [1 ]
Relton, Samuel D. [1 ]
机构
[1] Univ Manchester, Sch Math, Manchester M13 9PL, Lancs, England
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2014年 / 36卷 / 06期
基金
英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
matrix function; condition number; Frechet derivative; Kronecker form; matrix exponential; matrix logarithm; matrix powers; matrix pth root; MATLAB; expm; logm; sqrtm; ALGORITHM; SEARCH;
D O I
10.1137/130950082
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Frechet derivative L-f of a matrix function f : C-nxn -> C-nxn is used in a variety of applications and several algorithms are available for computing it. We define a condition number for the Frechet derivative and derive upper and lower bounds for it that differ by at most a factor 2. For a wide class of functions we derive an algorithm for estimating the 1-norm condition number that requires O(n(3)) flops given O(n(3)) flops algorithms for evaluating f and L-f; in practice it produces estimates correct to within a factor 6n. Numerical experiments show the new algorithm to be much more reliable than a previous heuristic estimate of conditioning.
引用
收藏
页码:C617 / C634
页数:18
相关论文
共 50 条