Multi-hop reasoning over paths in temporal knowledge graphs using reinforcement learning

被引:24
|
作者
Bai, Luyi [1 ]
Yu, Wenting [1 ]
Chen, Mingzhuo [1 ]
Ma, Xiangnan [1 ]
机构
[1] Northeastern Univ Qinhuangdao, Sch Comp & Commun Engn, Qinhuangdao 066004, Hebei, Peoples R China
基金
中国国家自然科学基金;
关键词
Temporal knowledge graph; Multi-hop reasoning; Reinforcement learning; Long Short-Term Memory Networks;
D O I
10.1016/j.asoc.2021.107144
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Knowledge graphs (KGs) are usually incomplete-many new facts can be inferred from KGs with existing information. In some traditional reasoning methods, temporal information is not taken into consideration, meaning that only triplets (head, relation, tail) are trained. In current dynamic knowledge graphs, it is a challenge to consider the temporal aspects of facts. Recent temporal reasoning methods embed temporal information into low-dimensional spaces. These methods mainly support implicitly reasoning, which means they cannot get the specific reasoning paths. These methods limit the accuracy of reasoning paths and ignore multiple explainable reasoning paths in temporal knowledge graphs (TKGs). To overcome this limitation, we propose a multi-hop reasoning model TPath in this paper. It is a reinforcement learning (RL) framework which can learn multi-hop reasoning paths and continuously adjust the reasoning paths in TKGs. More importantly, we add time vectors in reasoning paths, which further improve the accuracy of reasoning paths. Meanwhile, considering the diversity of temporal reasoning paths, we propose a new reward function. In TPath, the agent employs the Long Short-Term Memory networks (LSTM) to capture current observations from the environment, and it outputs action vectors (relation vectors and time vectors) to the environment through activation functions. Experimentally, our model outperforms other state-of-the-art reasoning methods in several aspects over two public temporal knowledge graph datasets. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Few-shot multi-hop reasoning via reinforcement learning and path search strategy over temporal knowledge graphs
    Bai, Luyi
    Zhang, Han
    An, Xuanxuan
    Zhu, Lin
    Information Processing and Management, 2025, 62 (03):
  • [2] Multi-hop temporal knowledge graph reasoning with multi-agent reinforcement learning
    Bai, Luyi
    Chen, Mingzhuo
    Xiao, Qianwen
    APPLIED SOFT COMPUTING, 2024, 160
  • [3] To hop or not, that is the question: Towards effective multi-hop reasoning over knowledge graphs
    Jinzhi Liao
    Xiang Zhao
    Jiuyang Tang
    Weixin Zeng
    Zhen Tan
    World Wide Web, 2021, 24 : 1837 - 1856
  • [4] To hop or not, that is the question: Towards effective multi-hop reasoning over knowledge graphs
    Liao, Jinzhi
    Zhao, Xiang
    Tang, Jiuyang
    Zeng, Weixin
    Tan, Zhen
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2021, 24 (05): : 1837 - 1856
  • [5] RLAT: Multi-hop temporal knowledge graph reasoning based on Reinforcement Learning and Attention Mechanism
    Bai, Luyi
    Chai, Die
    Zhu, Lin
    KNOWLEDGE-BASED SYSTEMS, 2023, 269
  • [6] ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs
    Zhang, Zhanqiu
    Wang, Jie
    Chen, Jiajun
    Ji, Shuiwang
    Wu, Feng
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [7] CylE: Cylinder Embeddings for Multi-hop Reasoning over Knowledge Graphs
    Chau Duc Minh Nguyen
    French, Tim
    Liu, Wei
    Stewart, Michael
    17TH CONFERENCE OF THE EUROPEAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, EACL 2023, 2023, : 1736 - 1751
  • [8] Multi-hop path reasoning over sparse temporal knowledge graphs based on path completion and reward shaping
    Meng, Xiangxi
    Bai, Luyi
    Hu, Jiahui
    Zhu, Lin
    INFORMATION PROCESSING & MANAGEMENT, 2024, 61 (02)
  • [9] Multi-hop path reasoning over sparse temporal knowledge graphs based on path completion and reward shaping
    Meng, Xiangxi
    Bai, Luyi
    Hu, Jiahui
    Zhu, Lin
    Information Processing and Management, 2024, 61 (02):
  • [10] A Multi-hop Link Prediction Approach Based on Reinforcement Learning in Knowledge Graphs
    Chen, Heng
    Li, Guanyu
    Sun, Yunhao
    Jiang, Wei
    Chen, Xinying
    2018 11TH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN (ISCID), VOL 1, 2018, : 165 - 169