JWSAA: Joint weak saliency and attention aware for person re-identification

被引:125
|
作者
Ning, Xin [1 ,2 ,3 ,5 ,6 ]
Gong, Ke [5 ,6 ]
Li, Weijun [1 ,2 ,3 ,4 ,5 ]
Zhang, Liping [1 ,5 ,6 ]
机构
[1] Chinese Acad Sci, Inst Semicond, Beijing 100083, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[3] Univ Chinese Acad Sci, Sch Microelect, Beijing 100049, Peoples R China
[4] Beijing Key Lab Semicond Neural Network Intellige, Beijing 100083, Peoples R China
[5] Beijing Wave Secur Technol Co Ltd, Beijing 102208, Peoples R China
[6] Wave Grp, Cognit Comp Technol Joint Lab, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
Deep neural networks; Attention mechanism; Saliency features; Person re-identification;
D O I
10.1016/j.neucom.2020.05.106
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Attention mechanisms can extract salient features in images, which has been proven to be effective for person re-identification. However, focusing on the saliency of an image is not enough. On the one hand, the salient features extracted from the model are not necessarily the features needed, e.g., a similar background may also be mistaken as salient features; on the other hand, various salient features are often more conducive to improving the performance of the model. Based on this, in this paper, a model that has joint weak saliency and attention aware is proposed, which can obtain more complete global features by weakening saliency features. The model then obtains diversified saliency features via attention diversity to improve the performance of the model. Experiments on commonly used datasets prove the effectiveness of the proposed method. (c) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:801 / 811
页数:11
相关论文
共 50 条
  • [1] Weak Reverse attention with Context Aware for Person Re-identification
    Gong, Ke
    Ning, Xin
    Yu, Hanchao
    Zhang, Liping
    Sun, Linjun
    2020 4TH INTERNATIONAL CONFERENCE ON CONTROL ENGINEERING AND ARTIFICIAL INTELLIGENCE (CCEAI 2020), 2020, 1487
  • [2] Joint Attention Mechanism for Person Re-Identification
    Jiao, Shanshan
    Wang, Jiabao
    Hu, Guyu
    Pan, Zhisong
    Du, Lin
    Zhang, Jin
    IEEE ACCESS, 2019, 7 : 90497 - 90506
  • [3] Person re-identification based on saliency
    Wang Cailing
    Tang Song
    Zhu Songhao
    Jing Xiaoyuan
    PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, : 3887 - 3890
  • [4] Person Re-Identification by Saliency Learning
    Zhao, Rui
    Oyang, Wanli
    Wang, Xiaogang
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (02) : 356 - 370
  • [5] Attention-Aware Adversarial Network for Person Re-Identification
    Shen, Aihong
    Wang, Huasheng
    Wang, Junjie
    Tan, Hongchen
    Liu, Xiuping
    Cao, Junjie
    APPLIED SCIENCES-BASEL, 2019, 9 (08):
  • [6] Attention-aware scoring learning for person re-identification
    Zhang, Miaohui
    Xin, Ming
    Gao, Chengcheng
    Wang, Xile
    Zhang, Sihan
    KNOWLEDGE-BASED SYSTEMS, 2020, 203
  • [7] Relation-Aware Global Attention for Person Re-identification
    Zhang, Zhizheng
    Lan, Cuiling
    Zeng, Wenjun
    Jin, Xin
    Chen, Zhibo
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 3183 - 3192
  • [8] Mixed Attention-Aware Network for Person Re-identification
    Sun, Wenchen
    Liu, Fang'ai
    Xu, Weizhi
    2019 12TH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN (ISCID 2019), 2019, : 120 - 123
  • [9] Deep attention aware feature learning for person re-Identification
    Chen, Yifan
    Wang, Han
    Sun, Xiaolu
    Fan, Bin
    Tang, Chu
    Zeng, Hui
    PATTERN RECOGNITION, 2022, 126
  • [10] Attention-Aware Compositional Network for Person Re-identification
    Xu, Jing
    Zhao, Rui
    Zhu, Feng
    Wang, Huaming
    Ouyang, Wanli
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 2119 - 2128