Sequential analysis of myocardial gene expression with phenotypic change: Use of cross-platform concordance to strengthen biologic relevance

被引:6
|
作者
Toni, Lee S. [1 ]
Carroll, Ian A. [1 ,2 ]
Jones, Kenneth L. [3 ]
Schwisow, Jessica A. [1 ]
Minobe, Wayne A. [1 ,4 ,5 ]
Rodriguez, Erin M. [1 ]
Altman, Natasha L. [1 ,4 ,5 ]
Lowes, Brian D. [6 ]
Gilberts, Edward M. [7 ]
Buttrick, Peter M. [1 ,4 ,5 ]
Kao, David P. [1 ,4 ,5 ]
Bristow, Michael R. [1 ,2 ,4 ,5 ]
机构
[1] Univ Colorado, Div Cardiol, Denver Anschutz Med Campus, Aurora, CO 80045 USA
[2] ARCA Biopharma, Westminster, CO 80020 USA
[3] Univ Colorado, Dept Pediat, Denver Anschutz Med Campus, Aurora, CO USA
[4] Univ Colorado, Cardiovasc Inst Pharmacogen, Boulder, CO 80309 USA
[5] Univ Colorado, Cardiovasc Inst Pharmacogen, Aurora, CO 80045 USA
[6] Univ Nebraska Med Ctr, Div Cardiol, Omaha, NE USA
[7] Univ Utah, Med Ctr, Div Cardiol, Salt Lake City, UT 84132 USA
来源
PLOS ONE | 2019年 / 14卷 / 08期
关键词
HEART-FAILURE; BETA(1)-ADRENERGIC RECEPTOR; CARDIAC-HYPERTROPHY; RNA-SEQ; STIMULATION; KINASE; ANGIOTENSIN; ACTIVATION; INHIBITION; GUIDELINES;
D O I
10.1371/journal.pone.0221519
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Objectives To investigate the biologic relevance of cross-platform concordant changes in gene expression in intact human failing/hypertrophied ventricular myocardium undergoing reverse remodeling. Background Information is lacking on genes and networks involved in remodeled human LVs, and in the associated investigative best practices. Methods We measured mRNA expression in ventricular septal endomyocardial biopsies from 47 idiopathic dilated cardiomyopathy patients, at baseline and after 3-12 months of beta-blocker treatment to effect left ventricular (LV) reverse remodeling as measured by ejection fraction (LVEF). Cross-platform gene expression change concordance was investigated in reverse remodeling Responders (R) and Nonresponders (NR) using 3 platforms (RT-qPCR, microarray, and RNA-Seq) and two cohorts (All 47 subjects (A-S) and a 12 patient "Super-Responder" (S-R) subset of A-S). Results For 50 prespecified candidate genes, in A-S mRNA expression 2 platform concordance (C-cpT), but not single platform change, was directly related to reverse remodeling, indicating C-cpT has biologic significance. Candidate genes yielded a C-cpT (PCR/microarray) of 62% for Responder vs. Nonresponder (R/NR) change from baseline analysis in A-S, and ranged from 38% to 100% in S-R for PCR/microarray/RNA-Seq 2 platform comparisons. Global gene C-cpT measured by microarray/RNA-Seq was less than for candidate genes, in S-R R/NR 17.5% vs. 38% (P = 0.036). For S-R global gene expression changes, both cross-cohort concordance (C-ccT) and C-cpT yielded markedly greater values for an R/NR vs. an R-only analysis (by 22 fold for C-ccT and 7 fold for C-cpT). Pathway analysis of concordant global changes for R/NR in S-R revealed signals for downregulation of multiple phosphoinositide canonical pathways, plus expected evidence of a beta(1)-adrenergic receptor gene network including enhanced Ca2+ signaling. Conclusions Two-platform concordant change in candidate gene expression is associated with LV biologic effects, and global expression concordant changes are best identified in an R/NR design that can yield novel information.
引用
收藏
页数:27
相关论文
共 17 条
  • [1] Sequential analysis of myocardial gene expression with phenotypic change: Use of cross-platform concordance to strengthen biologic relevance (vol 14, e0221519, 2019)
    Toni, Lee S.
    Carroll, Ian A.
    Jones, Kenneth L.
    Schwisow, Jessica A.
    Minobe, Wayne A.
    Rodriguez, Erin M.
    Altman, Natasha L.
    Lowes, Brian D.
    Gilbert, Edward M.
    Buttrick, Peter M.
    Kao, David P.
    Bristow, Michael R.
    PLOS ONE, 2019, 14 (10):
  • [2] Cross-Platform Analysis with Binarized Gene Expression Data
    Tuna, Salih
    Niranjan, Mahesan
    PATTERN RECOGNITION IN BIOINFORMATICS, PROCEEDINGS, 2009, 5780 : 439 - 449
  • [3] Differential network analysis from cross-platform gene expression data
    Zhang, Xiao-Fei
    Le Ou-Yang
    Zhao, Xing-Ming
    Yan, Hong
    SCIENTIFIC REPORTS, 2016, 6
  • [4] Differential network analysis from cross-platform gene expression data
    Xiao-Fei Zhang
    Le Ou-Yang
    Xing-Ming Zhao
    Hong Yan
    Scientific Reports, 6
  • [5] DSGeo: Software tools for cross-platform analysis of gene expression data in GEO
    Lacson, Ronilda
    Pitzer, Erik
    Kim, Jihoon
    Galante, Pedro
    Hinske, Christian
    Ohno-Machado, Lucila
    JOURNAL OF BIOMEDICAL INFORMATICS, 2010, 43 (05) : 709 - 715
  • [6] FACTOR ANALYSIS FOR CROSS-PLATFORM TUMOR CLASSIFICATION BASED ON GENE EXPRESSION PROFILES
    Wang, Shu-Lin
    Gui, Jie
    Li, Xueling
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2010, 19 (01) : 243 - 258
  • [7] CONFIDENCE: A Web App for Cross-Platform Differential Gene Expression Analysis, Gene Scoring, and Enrichment Analysis
    Shastry, Abhishek
    Ott, Benjamin
    Dunham-snary, Kimberly
    Hindmarch, Charles
    FREE RADICAL BIOLOGY AND MEDICINE, 2024, 224
  • [8] Cross-platform analysis of cancer microarray data improves gene expression based classification of phenotypes
    Warnat, P
    Eils, R
    Brors, B
    BMC BIOINFORMATICS, 2005, 6 (1)
  • [9] Cross-platform comparison and visualisation of gene expression data using co-inertia analysis
    Aedín C Culhane
    Guy Perrière
    Desmond G Higgins
    BMC Bioinformatics, 4
  • [10] Cross-platform analysis of cancer microarray data improves gene expression based classification of phenotypes
    Patrick Warnat
    Roland Eils
    Benedikt Brors
    BMC Bioinformatics, 6