Quantum computational geodesics

被引:2
|
作者
Brandt, Howard E. [1 ]
机构
[1] USA, Res Lab, Adelphi, MD USA
关键词
quantum computing; quantum circuits; quantum complexity; Riemannian geometry; quantum computational geodesics; Lax equation;
D O I
10.1080/09500340903180517
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The purpose of this paper is to mathematically investigate characteristics of a geodesic equation describing locally minimum complexity paths in the special unitary group manifold representing the unitary evolution of n qubits associated with a quantum computation. The geodesic equation is a nonlinear differential matrix equation of the Lax type. A simple local initial-value solution is elaborated for the case of three qubits.
引用
收藏
页码:2112 / 2117
页数:6
相关论文
共 50 条
  • [1] Aspects of Quantum Computational Geodesics
    Brandt, Howard E.
    QUANTUM INFORMATION AND COMPUTATION VII, 2009, 7342
  • [2] Quantum Computational Riemannian and Sub-Riemannian Geodesics
    Shizume, Kosuke
    Nakajima, Takao
    Nakayama, Ryo
    Takahashi, Yutaka
    PROGRESS OF THEORETICAL PHYSICS, 2012, 127 (06): : 997 - 1008
  • [3] Quantum geodesics in quantum mechanics
    Beggs, Edwin
    Majid, Shahn
    JOURNAL OF MATHEMATICAL PHYSICS, 2024, 65 (01)
  • [4] Quantum corrected geodesics
    Dalvit, DAR
    Mazzitelli, FD
    PHYSICAL REVIEW D, 1999, 60 (08)
  • [5] Quantum geodesics on quantum Minkowski spacetime
    Liu, Chengcheng
    Majid, Shahn
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (42)
  • [6] COMPUTATIONAL CONSIDERATIONS IN GENERATION OF GEODESICS IN COLOR SPACE
    JAIN, AK
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1973, 63 (10) : 1279 - 1279
  • [7] Roughness of geodesics in Liouville quantum gravity
    Fan, Zherui
    Goswami, Subhajit
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2024, 60 (03): : 2194 - 2210
  • [8] QUANTUM MEASUREMENT, DIFFUSION AND CANTORIAN GEODESICS
    ELNASCHIE, MS
    CHAOS SOLITONS & FRACTALS, 1994, 4 (07) : 1235 - 1247
  • [9] Quantum frictionless trajectories versus geodesics
    Barbado, Luis C.
    Barcelo, Carlos
    Garay, Luis J.
    PHYSICAL REVIEW D, 2015, 92 (08)
  • [10] QUANTUM JUMPS, GEODESICS, AND THE TOPOLOGICAL PHASE
    BENEDICT, MG
    FEHER, LG
    PHYSICAL REVIEW D, 1989, 39 (10): : 3194 - 3196