A non-cell-autonomous actin redistribution enables isotropic retinal growth

被引:19
|
作者
Matejcic, Marija [1 ]
Salbreux, Guillaume [2 ]
Norden, Caren [1 ]
机构
[1] Max Planck Inst Mol Cell Biol & Genet, Dresden, Germany
[2] Francis Crick Inst, London, England
来源
PLOS BIOLOGY | 2018年 / 16卷 / 08期
基金
英国惠康基金; 英国医学研究理事会;
关键词
INTERKINETIC NUCLEAR MIGRATION; ZEBRAFISH RETINA; PSEUDOSTRATIFIED EPITHELIA; BASEMENT-MEMBRANE; TISSUE; MORPHOGENESIS; DIFFERENTIATION; MECHANICS; BIOLOGY; SHAPE;
D O I
10.1371/journal.pbio.2006018
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Tissue shape is often established early in development and needs to be scaled isotropically during growth. However, the cellular contributors and ways by which cells interact tissue-wide to enable coordinated isotropic tissue scaling are not yet understood. Here, we follow cell and tissue shape changes in the zebrafish retinal neuroepithelium, which forms a cup with a smooth surface early in development and maintains this architecture as it grows. By combining 3D analysis and theory, we show how a global increase in cell height can maintain tissue shape during growth. Timely cell height increase occurs concurrently with a non-cell-autonomous actin redistribution. Blocking actin redistribution and cell height increase perturbs isotropic scaling and leads to disturbed, folded tissue shape. Taken together, our data show how global changes in cell shape enable isotropic growth of the developing retinal neuroepithelium, a concept that could also apply to other systems.
引用
收藏
页数:29
相关论文
共 50 条
  • [2] Retinal interneuron survival requires non-cell-autonomous Atrx activity
    Lagali, Pamela S.
    Medina, Chantal F.
    Zhao, Brandon Y. H.
    Yan, Keqin
    Baker, Adam N.
    Coupland, Stuart G.
    Tsilfidis, Catherine
    Wallace, Valerie A.
    Picketts, David J.
    HUMAN MOLECULAR GENETICS, 2016, 25 (21) : 4787 - 4803
  • [3] Microglia mediate non-cell-autonomous cell death of retinal ganglion cells
    Takeda, Akiko
    Shinozaki, Youichi
    Kashiwagi, Kenji
    Ohno, Nobuhiko
    Eto, Kei
    Wake, Hiroaki
    Nabekura, Junichi
    Koizumi, Schuichi
    GLIA, 2018, 66 (11) : 2366 - 2384
  • [4] Non-cell-autonomous retrotransposon silencing
    Eytan Zlotorynski
    Nature Reviews Molecular Cell Biology, 2016, 17 (5) : 265 - 265
  • [5] Non-cell-autonomous suppression of tumor growth by RECK in immunocompetent mice
    Matsuzaki, Tomoko
    Inoue, Joe
    Minato, Nagahiro
    Noda, Makoto
    JOURNAL OF CELLULAR PHYSIOLOGY, 2024, 239 (09)
  • [6] Excitotoxic Death of Retinal Neurons In Vivo Occurs via a Non-Cell-Autonomous Mechanism
    Lebrun-Julien, Frederic
    Duplan, Laure
    Pernet, Vincent
    Osswald, Ingrid
    Sapieha, Przemyslaw
    Bourgeois, Philippe
    Dickson, Kathleen
    Bowie, Derek
    Barker, Philip A.
    Di Polo, Adriana
    JOURNAL OF NEUROSCIENCE, 2009, 29 (17): : 5536 - 5545
  • [7] Cell-autonomous and non-cell-autonomous toxicity in polyglutamine diseases
    Sambataro, Fabio
    Pennuto, Maria
    PROGRESS IN NEUROBIOLOGY, 2012, 97 (02) : 152 - 172
  • [8] Cell-autonomous and non-cell-autonomous functions of caspase-8
    Ben Moshe, Tehila
    Kang, Tae-Bong
    Kovalenko, Andrew
    Barash, Hila
    Abramovitch, Rinat
    Galun, Eithan
    Wallach, David
    CYTOKINE & GROWTH FACTOR REVIEWS, 2008, 19 (3-4) : 209 - 217
  • [9] Non-cell-autonomous RNA silencing spread in plants
    Uddin, Mohammad Nazim
    Kim, Jae-Yean
    BOTANICAL STUDIES, 2011, 52 (02) : 129 - 136
  • [10] Cdk5 activity is required for Purkinje cell dendritic growth in cell-autonomous and non-cell-autonomous manners
    Xu, Bozong
    Kumazawa, Ayumi
    Kobayashi, Shunsuke
    Hisanaga, Shin-ichi
    Inoue, Takafumi
    Ohshima, Toshio
    DEVELOPMENTAL NEUROBIOLOGY, 2017, 77 (10) : 1175 - 1187