Relationship between electrical conductivity and spatial arrangements of carbon nanotubes in polystyrene nanocomposites: The effect of thermal annealing and plasticization on electrical conductivity

被引:23
|
作者
Fei, Guoxia [1 ]
Gong, Qichun [1 ]
Li, Dongxu [1 ]
Lavorgna, Marino [2 ]
Xia, Hesheng [1 ]
机构
[1] Sichuan Univ, Polymer Res Inst, State Key Lab Polymer Mat Engn, Chengdu 610065, Peoples R China
[2] CNR, Inst Polymers Composites & Biomat, Ple E Fermi 1, I-80055 Portici, NA, Italy
基金
对外科技合作项目(国际科技项目); 中国国家自然科学基金;
关键词
Electric conducting composites; Raman spectroscopy; In-situ small angle X-ray scattering; Carbon nanotube bundles; Molecular relaxations; X-RAY-SCATTERING; COMPOSITES; SPECTROSCOPY; TEMPERATURE; DISPERSION; POLYMERS; SYSTEMS;
D O I
10.1016/j.compscitech.2017.04.020
中图分类号
TB33 [复合材料];
学科分类号
摘要
The effect of both thermal annealing and plasticization of the polymeric matrix by low molecular weight compounds on the electrical conductivity of the polystyrene based carbon nanotubes (CNTs) composites were investigated. It was found that the electrical conductivity of the samples filled with 3 wt% of CNTs increased by nearly 2 orders of magnitude after thermal annealing for 10 h at 150 degrees C, and it further increased with increasing plasticizer content. The effect of the hierarchical CNT morphology on the electrical conductivity of composites was elucidated by in-situ Raman and Synchrotron Radiation Small Angle X-ray Scattering investigations. The synergistic effect between thermal treatment and matrix plasticization contributes to efficiently eliminate the residual stress at the interface between polymeric matrix and carbon nanotubes. This leads to the formation of a more effective CNTs network featured by more dense bundles, exhibiting a larger number of contacts between the CNTs which contributes to significantly enhance the electrical conductivity of composites. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:99 / 109
页数:11
相关论文
共 50 条
  • [1] Modeling the effect of interfacial conductivity between polymer matrix and carbon nanotubes on the electrical conductivity of nanocomposites
    Zare, Yasser
    Rhee, Kyong Yop
    RSC ADVANCES, 2020, 10 (01) : 424 - 433
  • [2] Electrical conductivity of carbon nanotubes and polystyrene composites
    Kazukauskas, V.
    Kalendra, V.
    Bumby, C. W.
    Ludbrook, B. M.
    Kaiser, A. B.
    PHYSICA STATUS SOLIDI C - CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 5, NO 9, 2008, 5 (09): : 3172 - +
  • [3] Effect of interfacial/interphase conductivity on the electrical conductivity of polymer carbon nanotubes nanocomposites
    Yasser Zare
    Kyong Yop Rhee
    Engineering with Computers, 2022, 38 : 315 - 324
  • [4] Effect of interfacial/interphase conductivity on the electrical conductivity of polymer carbon nanotubes nanocomposites
    Zare, Yasser
    Rhee, Kyong Yop
    ENGINEERING WITH COMPUTERS, 2022, 38 (01) : 315 - 324
  • [5] Electrical conductivity of nanocomposites metal-carbon nanotubes
    H. Yu. Mykhailova
    B. V. Kovalchuk
    Yu. F. Bozbey
    V. A. Dekhtyarenko
    MRS Communications, 2023, 13 : 320 - 323
  • [6] Electrical conductivity of nanocomposites metal-carbon nanotubes
    Mykhailova, H. Yu.
    Kovalchuk, B. V.
    Bozbey, Yu. F.
    Dekhtyarenko, V. A.
    MRS COMMUNICATIONS, 2023, 13 (02) : 320 - 323
  • [7] Advancement of a model for electrical conductivity of polymer nanocomposites reinforced with carbon nanotubes by a known model for thermal conductivity
    Zare, Yasser
    Rhee, Kyong Yop
    ENGINEERING WITH COMPUTERS, 2022, 38 (03) : 2497 - 2507
  • [8] Advancement of a model for electrical conductivity of polymer nanocomposites reinforced with carbon nanotubes by a known model for thermal conductivity
    Yasser Zare
    Kyong Yop Rhee
    Engineering with Computers, 2022, 38 : 2497 - 2507
  • [9] Electrical Conductivity of Polyvinylidene Fluoride Nanocomposites with Carbon Nanotubes and Nanofibers
    He, Linxiang
    Tjong, Sie Chin
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2011, 11 (12) : 10668 - 10672
  • [10] Electrical conductivity of multiwalled carbon nanotubes/polyester polymer nanocomposites
    Abazine, K.
    Anakiou, H.
    El Hasnaoui, M.
    Graca, M. P. F.
    Fonseca, M. A.
    Costa, L. C.
    Achour, M. E.
    Oueriagli, A.
    JOURNAL OF COMPOSITE MATERIALS, 2016, 50 (23) : 3283 - 3290